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Abstract. We study the design of provider incentives in the post-acute care setting —
a high-stakes but under-studied segment of the healthcare system. We focus on long-

term care hospitals (LTCHs) and the large (approximately $13,500) jump in Medicare

payments they receive when a patient’s stay reaches a threshold number of days. Dis-

charges increase substantially after the threshold, with the marginal discharged patient

in relatively better health. Despite the large financial incentives and behavioral response

in a high mortality population, we are unable to detect any compelling evidence of an

impact on patient mortality. To assess provider behavior under counterfactual payment

schedules, we estimate a simple dynamic discrete choice model of LTCH discharge de-

cisions. When we conservatively limit ourselves to alternative contracts that hold the

LTCH harmless, we find that an alternative contract can generate Medicare savings of

about $2,100 per admission, or about 5% of total payments. More aggressive payment

reforms can generate substantially greater savings, but the accompanying reduction in

LTCH profits has potential out-of-sample consequences. Our results highlight how im-

proved financial incentives may be able to reduce healthcare spending, without negative

consequences for industry profits or patient health.
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1. INTRODUCTION

Healthcare spending is one of the largest fiscal challenges facing the U.S. federal government.

Within the healthcare system, post-acute care (PAC) is an under-studied sector, with large stakes

for both spending and patient health. PAC refers to formal care provided to help patients recover

from an acute care event such as a surgery. Medicare spending on PAC is substantial, about $60

billion in 2013, or about 20% more than the much-studied Medicare Part D program. Over 40%

of hospitalized Medicare patients are discharged to PAC, and 13% of Medicare deaths involve a

PAC stay in the prior 30 days. PAC spending is growing faster than overall Medicare spending and

accounts for almost three-quarters of the unexplained geographic variation in Medicare spending

(Newhouse et al. 2013).1

In this paper, we study the impact of provider financial incentives in determining patient flows

and government spending in the Medicare PAC system. The PAC setting is attractive for sev-

eral reasons. First, given its fiscal importance, understanding the effects of financial incentives is

a natural area for inquiry. Second, the institutional environment — involving multiple interlock-

ing and potentially substitutable settings that operate under different reimbursement regimes —

suggests that financial incentives may have first order consequences. Third, ineffi ciencies in the

PAC sector have potentially important implications for public health, given that PAC patients are

disproportionately high risk and might be more vulnerable to ineffi ciencies in the delivery of care.

Our analysis focuses on patients whose point of entry into the PAC system is a long-term care

hospital (LTCH).2 Medicare spending on LTCHs was about $5.5 billion in 2013, or slightly under

10% of Medicare PAC spending (MedPAC 2015a). We focus on LTCH patients because of the sharp

variation in provider incentives at this type of facility. This is illustrated in Figure 1: providers are

reimbursed a daily amount (of approximately $1,300 on average) up to a threshold number of days,

at which point there is a large (approximately $13,500 on average) jump in payments for keeping

a patient an additional day beyond the threshold, but no payments for any days beyond it. We

investigate the effects of this jump in payments using detailed Medicare claims data on the universe

of LTCH stays over the 2007-2012 period, when this non-linear payment schedule was in effect, as

well as the 2000-2002 period, when LTCHs were instead reimbursed under a linear (i.e., constant

per-diem) payment schedule.

We start by briefly presenting descriptive evidence on the effect of the jump in payments on

discharge behavior. While some of these results have been previously documented, we present them

to motivate our model of LTCH behavior. Discharges respond strongly to the payment increase,

with the share of stays discharged increasing from 2% to 9% at precisely the day of the jump. The

marginal patient discharged at the threshold appears to be much healthier than patients discharged

beforehand: at the threshold, patients are disproportionately more likely to be discharged to a less

1These statistics are taken from MedPAC (2004), MedPAC (2015a), and MedPAC (2015b), with the exception of

the statistic on deaths which we calculate using the data described in Section 2.
2The acronym LTCH is typically pronounced “el-tack,”presumably reflecting the fact that LTCHs are sometimes

referred to as long-term acute care hospitals (LTACs), which is pronounced in this manner.
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intensive PAC facility or home (“downstream”) than to an acute care hospital (“upstream”), and

they have substantially lower post-discharge mortality than patients discharged on earlier days.

A natural question raised by this evidence is whether distortions in the timing of discharge have

an impact on patient health. Given the high baseline mortality rate for LTCH patients (30% die

within 90 days of LTCH admission), if the distortions are harmful, it seems plausible that we could

detect an effect. Empirical analysis is challenging, however, because unlike discharge behavior,

mortality effects may not appear right “at”the threshold. This challenge notwithstanding, we find

no compelling evidence of mortality effects from the distortions in discharge behavior. There is

no evidence of a change in the level or the slope of the mortality hazard in the vicinity of the

threshold. We also find no indication of a mortality impact when we analyze the effect of small

over-time changes in the day at which the jump in payments occurs. Of course, these results do

not allow us to comprehensively rule out a mortality effect —we cannot, for instance, rule out an

effect for every type of patient or at each and every hospital; and these results do not speak to

adverse health effects that would not manifest in higher mortality rates. However, at minimum,

they provide no “smoking gun”evidence of patient harm, and suggest that the marginal patients

are able to receive similar care —at least in terms of mortality impact —whether they are located

in LTCHs or in an alternative setting, which empirically is usually a less intensive PAC institution,

such as a Skilled Nursing Facility (SNF).

Motivated by this descriptive evidence, we specify and estimate a dynamic model of LTCH

behavior. The purpose of our model is to analyze how providers respond to the payment schedule

on days further from the threshold, and to assess how treatment patterns and Medicare payments

would be affected by counterfactual payment schedules. In our model, patients are characterized

by their health, which evolves stochastically over time. LTCHs face a (daily) decision of whether

to retain the patient or discharge her to another facility. The LTCH’s objective function includes

both net revenue (Medicare payments net of costs) and other, non-monetary considerations, such as

patient outcomes. If the patient is discharged from the LTCH, the provider receives no subsequent

net revenue, but internalizes potential consequences of the patient being treated in an alternative

location. If the LTCH keeps the patient, it receives net revenue that depends on Medicare’s payment

schedule, while also accounting for the non-monetary outcomes associated with the patient being

treated in the LTCH and the option value of making a similar discharge decision the following day.

The provider therefore faces a standard dynamic discrete choice problem.

We estimate the model by simulated method of moments to match the observed discharge and

mortality patterns under the linear and non-linear payment schedules. We then use the estimated

model to investigate the effects of alternative contracts that — like the observed contract —have

a daily reimbursement rate up to a cap but that —unlike the observed contract —do not have a

jump in payments at a threshold day. We find, for example, that if we were to lower the fixed

payment to eliminate the jump in payments at the threshold, we would reduce total payments per

admission for the episode of care by 25% on average, or about $13,000 per admission. However,

such a payment schedule substantially reduces LTCH revenue and estimated profits, and therefore

may have out-of-sample impacts on LTCH behavior that our estimates would not capture, such as
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inducing LTCH exit or lower service quality.

We therefore also engage in a more conservative set of counterfactuals in which we restrict

attention to alternative contracts that would hold the LTCH harmless if their behavior did not

change. Specifically, we consider the set of contracts that hold LTCH profits constant under their

observed discharge schedule. Thus, if we apply this schedule and it triggers a “behavioral”response

by LTCHs, they must be better off. Using our estimated model, we are able to identify a broad set

of “win-win”payment schedules that reduce Medicare payments and, by construction, leave LTCHs

(weakly) better off.3 The contract that generates the largest savings reduces Medicare payments

for the episode of care by 4.5%, and increases LTCH profits by 5.1%.

Our paper relates to a large literature examining how healthcare spending responds to finan-

cial incentives. Given the importance of healthcare spending in the economy and in public sector

budgets, the existence of this large literature is not surprising. What is surprising —and arguably

unfortunate from this perspective —is that the vast majority of this literature (including much of

our own work) has concentrated on the impact of consumer financial incentives, such as deductibles

and co-payments, while paying relatively less attention to the impact of provider financial incen-

tives.4 Existing work on provider-side incentives has focused on descriptive evidence that providers

do, indeed, respond to incentives, with much of the evidence coming from the introduction of

the Inpatient Prospective Payment System in 1983 (Cutler 1995; Cutler and Zeckhauser 2000).

More recently, Clemens and Gottlieb (2014) and Ho and Pakes (2014) provided a rare look at the

behavioral response of physicians to financial incentives.

The relative lack of research on the provider side presumably reflects the diffi culties in finding

clean variation in incentives. Perhaps not surprisingly, the sharp incentives created by the LTCH

payment schedule have already received some attention in academic (Kim et al. 2015), popular

(Weaver et al. 2015), and policy (MedPAC 2016) spheres. Our descriptive work on discharges

around the threshold is quite similar to this prior work, while our descriptive analysis of the health

of the marginal dischargee and of mortality effects is new.

Our paper is most closely related to Eliason et al. (forthcoming) who — in concurrent in-

dependent work — also study the impact of the LTCH payment schedule on discharge behavior

descriptively and through the lens of a dynamic model. Our findings and those of Eliason et al. are

very much in concert. Both papers present evidence that LTCHs’discharge decisions strongly re-

spond to the sharp financial incentives at the threshold, and each paper develops a dynamic model

to simulate the impact of alternative payment policies, the results of which (when comparable)

are also very similar. Our study places a greater emphasis on the impact on patient outcomes

and examines a somewhat different set of counterfactual payment policies, but restricts attention

3Given the lack of compelling evidence of mortality effects at the threshold, it seems reasonable to assume that

mortality is unlikely to be impacted much under these “LTCH held harmless”alternative contracts.
4The majority of healthcare spending, however, is accounted for by a small share of high-cost individuals whose

spending is largely in the “catastrophic” range where deductibles and co-payments no longer bind; for example, 5%

of the population account for 50% of healthcare expenditures (Cohen and Yu 2012). It seems likely that for such

patients, consumer cost-sharing may have little impact relative to provider-side incentives.

3



to the average response. In contrast, Eliason et al. allow for and place greater emphasis on the

heterogeneity in the behavioral response across LTCHs and patient demographics.

Finally, from a more conceptual perspective, our paper is related to a growing literature that

seeks to interpret descriptive evidence of the behavioral responses to non-linear payment schedules

(“bunching”) through the lens of economic models that allow for assessments of behavior under

counterfactual schedules (e.g., Chetty et al. 2011; Einav et al. 2015; Manoli and Weber 2016;

Bajari et al. 2017; Dalton et al. 2017).

The rest of the paper proceeds as follows. Section 2 provides some background on the PAC

sector, LTCHs, and our data. In Section 3, we describe the discharge and mortality patterns

around the jump in payments. Section 4 motivates the need for dynamics, presents the model, and

discusses estimation and identification. Section 5 presents the estimation results and the impact of

counterfactual payment policies. Section 6 concludes.

2. SETTING AND DATA

2.1. Post-Acute Care in the United States

Post-acute care (PAC) is the term for rehabilitation and palliative services provided to patients

recovering from an acute care hospital stay. In the United States, the Center for Medicaid and

Medicare Services (CMS) associates PAC with three types of facilities — long-term care hospitals

(LTCHs), skilled nursing facilities (SNFs), and inpatient rehabilitation facilities (IRFs) —as well

as care at home provided by home health agencies (HHAs) (MedPAC 2015b). In 2013, Medicare

paid $60 billion to PAC providers, approximately 16% of the $368 billion paid that year in Tradi-

tional Medicare (TM) claims; PAC facilities constitute about 70% of total PAC spending, with the

remaining 30% associated with HHAs (MedPAC 2015a).

In recent years, the geographic variation and growth rate of spending on PAC have raised

concerns about the effi ciency of the sector. From 2001 to 2013, Medicare spending on PAC grew at

an annual rate of 6.1%, two percentage points higher than the rate of spending growth for TM as

a whole (The Boards of Trustees for Medicare, 2002 and 2014; MedPAC 2015a). A recent Institute

of Medicine report found that, despite accounting for only 16% of spending, PAC contributed to

a striking 73% of the unexplained geographic variation in spending, suggesting that there may be

substantial ineffi ciencies in the sector (Newhouse et al. 2013).

It is useful to think about patients as generally flowing “downstream”through the healthcare

system. Upon experiencing an acute health event, they go to a regular Acute Care Hospital (ACH);

from there they may be sent to a PAC facility to recover, and eventually go home once they are

suffi ciently healthy and can function independently. Some ACH patients “skip”the PAC stay and

return home directly from the ACH, and some patients occasionally relapse and move “upstream”

from a PAC facility back to an ACH.

The top panel of Figure 2 gives a sense of transitions among ACHs, PAC facilities (LTCHs,

SNFs, and IRFs), home (including HHAs), and death (including hospice). (Throughout the rest
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of the paper, we use the term PAC facilities to refer to LTCHs, SNFs, and IRFs, because these

are facilities that provide in-house care, in contrast to HHAs, which provide care at the patient’s

home.) In our data, described below, 26% of patients who are discharged from an ACH receive

follow-up care from a PAC facility.5 From these PAC facilities, 60% of patients continue to flow

home, where they may still receive treatment from an HHA, while 34% are discharged back to an

ACH. The remaining 6% are discharged to a hospice or due to death.

Just like the natural flow of patients into and out of the PAC system, there is also a general

ordering of care within it. LTCHs provide the most intensive care, SNFs and IRFs provide less

intensive care, and HHAs provide the least intensive bundle of medical services. Severity of Illness

categories are a commonly used measure of intensity of care, and are constructed using the patient’s

age, diagnoses, procedures, and comorbidities. The share of patients in the highest severity of illness

category declines from 43% at LTCHs, to approximately 12% at SNFs and IRFs, to 4% at HHAs

(AHA 2010). Medicare payments per day follow the same declining pattern.

Our point of entry into the PAC landscape is through admission to an LTCH. Virtually all

LTCH admissions are from an ACH. The bottom panel of Figure 2 looks at patient flows from

LTCHs. About 11% of LTCH patients are discharged back to an ACH, 38% are discharged to

another PAC facility (SNF or IRF), and 34% are discharged home, where they may continue to

receive care from an HHA. The remaining 17% are discharged to a hospice (4%) or die within the

LTCH (13%). In contrast, once in a SNF or IRF, patients almost never get discharged to an LTCH,

die much less frequently (5%), and much more often (60%) return directly home.

Despite the interlocking nature of the PAC system, the way that Medicare reimburses post-

acute care varies substantially by the setting. Historically, all providers were paid according to

an administrative estimate of their costs. Since the early 2000s, however, Medicare has shifted to

paying PAC providers under separate prospective payment systems that vary based on the type of

provider. Loosely, HHAs are paid per 60-day episode-of-care, SNFs are paid a fixed rate per day,

and IRFs and LTCHs are paid a fixed amount per admission (like ACHs). We provide more details

on LTCH payments in Section 3.

The fact that each type of facility is paid under a different system has raised concerns. From a

public health perspective, there is concern that the separate payment systems do not give providers

enough incentive to coordinate care across different facilities. From a budgetary perspective, there

is concern that providers may shuffl e patients across facilities with the aim of increasing Medicare

payments. These concerns have spurred various proposals for payment reform, including a re-

cent bill which proposes providing a “bundled payment”to a single PAC coordinator, and letting

this coordinator internalize the costs and benefits associated with the sequence of admissions and

discharges for the entire episode of care (H.R.1458: BACPAC Act of 2015).

5 In analysis that includes HHAs in the calculation, the share of ACH patients who are discharged to PAC rises to

42% (MedPAC 2015b).
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2.2. Long-Term Care Hospitals

Our primary focus is on patients whose point of entry into the PAC system is a long-term care

hospital (LTCH). The demarcation “LTCH”describes how the provider gets paid by Medicare. It

is a regulatory concept, rather than a medical one. For a hospital to get paid as an LTCH, it must

have an average inpatient length of stay of 25 days or more. Naturally, there are many ways to

meet this requirement; from a medical standpoint, the question of what an LTCH is or does is not

well-defined.

The LTCH category of hospitals was created to solve a potential “side effect”of the 1982 Tax

Equity and Fiscal Responsibility Act (TEFRA), which established the prospective payment system

(PPS) for acute care hospitals. Under the new PPS, hospitals were paid per discharge, and not

based on their costs, as a way to provide incentives for hospitals to be effi cient in their treatment

decisions. Regulators who were designing the PPS realized that there was a small number of

hospitals that had long average length-of-stays (LOS) and would not be financially viable under

the fixed-price PPS. LTCHs were thus created as a carve-out from PPS for hospitals that had an

average LOS of at least 25 days. At that point in time, there were 40 hospitals that qualified

as LTCHs —mainly former tuberculosis and chronic disease hospitals in the Boston, New York

City, and Philadelphia metropolitan areas. LTCH payments were based on costs measured in 1982,

roughly in the spirit of the pre-1982 payment system, and adjusted for inflation in subsequent years.

See Liu et al. (2001) for more on the background of the LTCH sector.

Over the last 30 years, and perhaps because of the LTCH exemption from PPS, there was rapid

growth in the LTCH sector. Because new entrants did not have cost data for 1982, payments for

new entrants were determined by costs in their initial years of operation. This encouraged new

entrants to be ineffi cient when they first opened and earn profits by increasing their effi ciency over

time (Liu et al. 2001). From the initial 40 hospitals first designated as LTCHs in 1982, there are

now over 400 LTCHs in the country.

Geographic penetration of LTCHs is extremely varied. There are only a few LTCHs in the west

of the country, and three states (Massachusetts, Texas, and Louisiana) account for a third of all

LTCHs (Liu et al. 2001). In places where there are LTCHs, these hospitals are an important part of

Medicare’s PAC landscape. For instance, in hospital service areas (HSAs) with at least one LTCH,

we calculate that LTCHs account for 13% of Medicare PAC facility days and 28% of Medicare

PAC facility spending; nationwide, payments to LTCHs account for 12% of Medicare PAC facility

spending.6

LTCHs are much more likely to be for-profit than other medical providers. According to 2008

data from the American Hospital Association (AHA), 72% of LTCHs are for-profit (versus 17% for

ACHs), 22% are non-profit, and 6% are government run. The LTCH market is dominated by two

for-profit companies, Kindred Health Systems and Select Medical, which run about 40% of LTCHs,

according to the AHA data. Company reports indicate that LTCHs are highly profitable. For their

business segments that include LTCHs, Kindred’s profits have hovered between 22% and 29% of

6Statistics calculated using the 2007-2012 MedPAR data described below.
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revenue and Select’s profits have ranged between 16% to 22% of revenue.7

Approximately half of LTCHs are known as Hospitals-within-Hospitals (HwHs), meaning that

they are physically located within the building or campus of an ACH but have a separate governing

body and medical staff. Regardless of their location, LTCHs tend to have strong relationships with

a single ACH (MedPAC 2004). Because of concerns over close relationships between LTCHs and

their partner ACHs, in 2005 CMS established a policy known as the “25-percent rule”that creates

disincentives for admitting more than 25% of patients from a single facility; however, Congress has

delayed the full implementation of the law.8

2.3. Data

Our main analysis focuses on patients who are admitted to an LTCH and follows them throughout

their entire healthcare episode. Our primary data source is the Medicare Provider and Analysis

Review (MedPAR) data, spanning the years 2000-2012. The dataset contains claim-level informa-

tion on discharges from ACHs, LTCHs, SNFs, and IRFs. Each record is a unique stay for which

a claim was submitted, and the data contain information on procedures, admission and discharge

dates, admission sources and discharge destinations, hospital charges, and Medicare payments. The

MedPAR data also provide us with basic demographic information such as the age, sex, and race

of the beneficiary, and information about the patient’s diagnoses.

We supplement this primary source with several ancillary data sources. First, we use Medicare’s

beneficiary summary file to approximate the (quite small) post-LTCH discharge payments to hos-

pices and HHAs, as well as post-LTCH discharge hospice days; Appendix A provides more details.

Second, we use Medicare’s beneficiary files to determine whether the beneficiary is dually eligible

for Medicare and Medicaid and the date of death. A key advantage of these data is that they allow

us to observe death regardless of whether and where the patient is receiving care. Third, we use the

Medicare chronic conditions file to measure whether the individual has any of 27 chronic conditions

in the calendar year prior to the LTCH stay. Finally, we use data from the American Hospital Asso-

ciation (AHA) survey over the same period to determine whether an LTCH is for-profit, non-profit,

or government owned, and whether it is co-located with an ACH.

Our analysis focuses on the current Medicare payment schedule for LTCHs, known as LTCH-

PPS. We analyze the time periods before and after full implementation of LTCH-PPS, which was

phased in over a five-year period starting on October 1, 2002. We define the pre-PPS period as

discharges that occurred from January 1, 2000 to September 30, 2002. For this period, we measure

post-discharge payments, days and mortality through March 31, 2003, which is six months after

the last LTCH discharge. We exclude the October 2002 to September 2007 phase-in period because

7Profits are defined as EBITA (earnings before interest, taxes, and amortization). Kindred’s profits are based on

2009 to 2015 company reports. Prior to 2009, Kindred did not separate out their reporting of LTCH profits from the

much larger SNF category. Select’s profits are based on company reports from 2004 to 2015.
8There is also a regulation known as the “5-percent rule” that addresses the incentive for HwHs to “ping-pong”

patients between the ACH and LTCH. If more than 5% of patients who are discharged from an LTCH to an ACH are

readmitted to the LTCH, the LTCH will be compensated as if the patient had a single LTCH stay (42 CFR 412.532).
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provider behavior during this period potentially reflects the combination of changing financial

incentives and learning about the new incentive structure, complicating the interpretation of the

data. We define the PPS period as discharges that occurred from October 1, 2007 to July 31, 2012,

and analyze post-discharge payments, days and mortality through December 31, 2012, which is

similarly six months after the last LTCH discharge.

Table I shows summary statistics on ACH, LTCH, and SNF/IRF admissions in the pre-PPS

and PPS periods.9 Since an observation is an admission, some patients (16%) show up multiple

times in the data. LTCH patients are, on average, slightly younger than ACH patients and much

younger than SNF/IRF patients. LTCH patients are also almost twice as likely to be black and

about one-third more likely to be eligible for Medicaid, relative to ACH and SNF/IRF patients.

These differences are fairly stable over time. In terms of health, LTCH patients appear less healthy

than those in an ACH or SNF/IRF. LTCH patients have more chronic conditions prior to the stay

and higher mortality. For example, about 15% of LTCH patients die within 30 days of admission

and 30% die within 90 days; these mortality rates are about 50% larger than mortality rates for

SNF/IRF patients and about twice as large as those for ACH patients.

In terms of the intensity of medical care, LTCH stays are closer to ACH stays than stays at

a SNF/IRF. The majority of LTCH and ACH patients receive at least one medical procedure

versus about 2% of patients who visit an SNF/IRF. The most common LTCH procedures (cardiac

catheterization and blood transfusion) are also more similar to those that occur at an ACH, relative

to occupational and physical therapy, which are the most common procedures in SNF/IRF. Length

of stay at an LTCH, however, is (by design) much more similar to that of a SNF/IRF. The average

stay at an ACH is 5 days, while it is just over 25 days in LTCH and SNF/IRF.

The bottom rows of Table I show statistics on Medicare and out-of-pocket payments. Medicare

payments in the PPS period average $2,074 per day at an ACH, $1,391 per day at an LTCH, and

$507 per day at a SNF/IRF. However, because LTCH stays are much longer than ACH stays, per-

admission Medicare payments at LTCHs average over $35,000, which is three times greater than

per-admission ACH and SNF/IRF payments. Out-of-pocket payments at ACHs and LTCHs arise

from Medicare’s Part A deductible ($1,156 in 2012) and from co-insurance payments that apply

when the patient has more than 60 hospital days in the benefit period ($289 per day in 2012).

Because patients have no out-of-pocket exposure between the deductible and their 60th hospital

day, out-of-pocket payments are a modest 7.7% of Medicare payments at ACHs and 5.4% at LTCHs

in the PPS period. SNFs, on the other hand, have a separate co-insurance schedule with payments

of $144.50 per day in 2012 for stays in excess of 20 days, and a much higher out-of-pocket share.

Our analysis encompasses not only the experience of the patient in the LTCH (i.e., length of

stay and payments) but also their post-discharge experience. We define a post-discharge episode

of care as the spell of continuous days with a Medicare payment to an ACH, SNF/IRF, or LTCH;

the episode ends if there are two days or more without any Medicare payments being made to any

of these institutions. For each post-discharge episode we report 30-day mortality, 90-day mortality,

9We group SNF and IRF admissions together for convenience, as both represent post-acute care that is “less

intense”than an LTCH and because IRFs only account for a small (6.4%) fraction of these admissions.
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post-discharge Medicare payments, and post-discharge facility days (i.e. days in an ACH, SNF/IRF,

LTCH, or hospice). Table II shows summary statistics on post-discharge outcomes. Focusing on

the PPS period, about one-quarter of LTCH patients die within 90 days of discharge. Average

length of stay in the post-discharge episode of care is 26 days, which is similar to the average time

in the LTCH (see Table I). Average post-discharge Medicare payments is $22,808, about 60% of

Medicare payments to the LTCH (see Table I).

In some of our analyses below, we find it useful to classify live discharges from the LTCH as either

“upstream”or “downstream”based on their discharge destination. Upstream discharges represent

patients in worse health than downstream destinations. Specifically, we group LTCH discharges

to hospice or ACH as upstream and we group discharges to SNF/IRF, home (with or without

home healthcare), and other as downstream.10 Table II shows that most (about 85%) of LTCH

discharges are downstream, and that patients initially discharged downstream have substantially

lower post-discharge mortality, length of stay, and payments.

3. LTCH PAYMENTS, DISCHARGE PATTERNS, AND OUT-
COMES

In this section we present descriptive analysis on LTCHs’ response to financial incentives. The

analysis motivates several of the key choices for our model of LTCH discharges, which we present

in Section 4.

3.1. LTCH Payments

We start by describing how LTCH payments vary with the patient’s length of stay, an object we

refer to as the LTCH budget set or payment schedule. Appendix B provides more details. Figure

1 summarizes the payment schedules in the pre-PPS and PPS periods.

Prior to October 1, 2002, LTCHs were paid their (estimated) daily cost, generating a linear

relationship between the length of the hospital stay and payments. As described earlier, this

“cost plus”reimbursement of LTCHs was seen as potentially encouraging ineffi cient entry into the

LTCH market. Because of this and other concerns, the 1997 Balanced Budget Act (BBA) and

1999 Balanced Budget Refinement Act (BBRA) implemented a PPS for LTCHs. LTCH-PPS was

phased in over a 5-year period starting on October 1, 2002 and was fully implemented by October

1, 2007. At a broad level, LTCH-PPS is designed to operate like the PPS for acute care hospitals

(IP-PPS), under which hospitals are paid a lump-sum that is based on the patient’s diagnosis

(diagnosis-related group, or DRG) and does not vary with the patient’s length of stay.

Much like LTCHs were originally created to address a potential problem with the introduction

of PPS for ACHs, the features of the LTCH-PPS payment schedule can similarly be thought of as

10Table A.I shows with more granularity the discharge destinations within upstream and downstream. In the PPS

period 76% of patients discharged upstream are sent to ACH (versus hospice); of patients discharged downstream,

about half are sent to SNF/IRF and another 44% are discharged to home or home health care.
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attempting to address a potential problem arising from the introduction of PPS for LTCHs. In

particular, in designing LTCH-PPS, offi cials were concerned that LTCHs might discharge patients

after a small number of days but still receive large lump-sum payments intended for longer hospitals

stays. To address this concern, they created a short stay outlier (SSO) threshold. If stays were

shorter than the SSO threshold, payments would be based on the pre-PPS cost-based reimbursement

schedule and LTCHs would not receive a large lump sum. However, while reducing the incentive to

cycle patients in and out of the LTCH, the SSO system creates potentially problematic incentives at

the SSO threshold. At the day when payments switch from per-day reimbursement to the lump-sum

prospective payment amount, Medicare payments for keeping a patient an additional day “jump”

by a large amount.

Figure 1 graphs the average payment schedules in the pre-PPS and PPS periods, pooling across

LTCH facilities and DRGs. The y-axis shows cumulative Medicare payments, inflation-adjusted

to 2012 dollars. The x-axis shows the length of the stay relative to the SSO threshold, which we

normalize to be day 0. The SSO threshold is defined as five-sixths the geometric mean length of

stay for that DRG in the previous year and therefore varies by DRG (and also, to a lesser extent,

by year). The average threshold is at 22.6 days; the modal threshold (accounting for 22.7% of PPS

stays) is 20 days; the range is 14 to 56 days, but 99% of the sample has a SSO threshold between

16 and 39 days. As a result, in this and subsequent figures, we present results relative to the SSO

threshold so that we can pool analyses across DRGs.11 Because the SSO threshold is undefined in

the pre-PPS period, we assign pre-PPS stays the threshold for their DRG from the first year of the

PPS period, 2007.

Under the pre-PPS system, average payments scale linearly with the length of stay at a rate of

$1,071 per day. Under the PPS system, average payments increase linearly by $1,380 per day to the

left of the SSO threshold, jump by $13,625 at the SSO threshold, and remain constant thereafter.

The jump in payments is large: it is equal to 55% of the cumulative payment amount on the day

prior to the threshold, or equivalent to about 10 days of payments at the pre-threshold daily rate.

This sharp jump in payments was presumably not the intention of the policymakers who de-

signed the LTCH-PPS, but it arises naturally from the interaction of two sensible policies. As is

standard in fixed price contracts, the LTCH-PPS payments were likely set to approximate average

costs per stay. As noted, payments on a cost-plus basis up to the SSO threshold were introduced to

avoid paying LTCHs large lump sum amounts for relatively short stays. The (approximate) average

cost for stays longer than the threshold naturally introduces a jump in payments in the transition

from a per-day payment regime to a per-stay regime, creating potentially problematic incentives.

Particularly concerning is where the threshold was set: we estimate that under the pre-PPS pay-

ment scheme, 44% of stays would have been below the subsequent short stay outlier threshold,

which is a large fraction for a policy that is at least ostensibly designed to target “outlier”events.

11We start the x-axis range at -15 days because nearly all SSO thresholds occur after 16 days. If we extended the

x-axis range to -16, for example, there would be a change in the composition of DRGs between days -16 and -15 due

to the entry of new DRGs into the sample. We end the x-axis range at +45 days because there are relatively few

patients (2.1%) who are kept at the LTCH more than 45 days beyond the SSO threshold.
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In Section 5 we explore the impact of alternative, counterfactual payment schedules. To elim-

inate the jump in payments, our counterfactuals alter the payment prior to the SSO threshold

(so that it does not approximate per-day costs), alter the fixed PPS amount (so that it does not

approximate average costs), or alter both segments of the payment schedule.

3.2. Discharge Patterns

To motivate our model of LTCH behavior, we present three main descriptive results on discharge

patterns from the LTCH around the threshold; some have been previously documented, while others

are, to the best of our knowledge, new.

First, there is a large spike in discharges at precisely the day of the jump in payments, indicating

a strong response to financial incentives. This finding has been noted by a number of previous

studies (Weaver et al. 2015; Kim et al. 2015; MedPAC 2016). Specifically, the top left panel

of Figure 3 shows the aggregate pattern of discharges by length of stay in the pre-PPS and PPS

periods. A discharge occurs when the patient is transferred to another facility, sent home, or dies

at the LTCH. The y-axis shows discharges as a share of the total number of stays at the LTCH.

The x-axis plots the length of stay relative to the DRG-specific SSO threshold, defined in the same

manner as in Figure 1. In the PPS period, there is a sharp increase in discharges at the SSO

threshold, with the share of discharges increasing from about 2% to 9% per day. Discharge rates

remain elevated over the subsequent 7-10 days before reverting to baseline. In the pre-PPS period,

there is no evidence of any bunching at the SSO threshold; differences in the pre-threshold discharge

rate may reflect changes in patient health or other secular trends between the periods. Importantly,

there is not a sharp decrease in discharges immediately before the SSO threshold under PPS; as we

discuss in more detail below, this motivates our decision to write down a dynamic model of LTCH

behavior (where LTCHs respond well in advance of the jump in payments) rather than a myopic

model (where LTCHs only respond immediately before the jump).

Second, the marginal patients discharged at the threshold are in relatively better health: they

are disproportionately discharged downstream and have lower post-discharge mortality rates than

patients discharged at other times; Eliason et al. (forthcoming) have also documented that marginal

patients are disproportionately discharged downstream. The rest of the panels of Figure 3 decom-

pose the discharge pattern by the location of discharge: downstream, upstream, and death. They

show increases at the threshold in discharges both upstream and downstream, but the proportional

increase is substantially larger on the downstream margin. Moreover, because the pre-threshold

discharge rate is much higher downstream, the sharp change in the aggregate discharge rate at

the threshold (top left panel) is almost entirely driven by downstream discharges. We defer our

discussion of the right bottom panel on mortality to the subsection below.12

12 In addition, Figure A.2 plots the 30-day post-discharge mortality rate, defined as death within 30 days of a (live)

discharge, by length of stay. The graph shows a sharp drop in post-discharge mortality at the SSO threshold, again

suggesting that the patients who are discharged at the threshold are healthier than the patients who are discharged

immediately beforehand. Of course, the decline in mortality not only reflects changes in the composition of patients

discharged at the threshold, but could in principle reflect a treatment effect of discharge on health. We address this

11



Third, among patients discharged downstream, the marginal patients discharged at the thresh-

old are relatively sicker, with higher post-discharge payments than pre-threshold dischargees. Fig-

ure 4 illustrates this, plotting Medicare payments for the episode of care that occurs after the

LTCH discharge, by length of stay at the LTCH. We show these post-discharge payments sepa-

rately for patients discharged upstream and downstream and view them as a proxy for the patient’s

health at the time of discharge. For patients discharged downstream, there is a sharp increase in

post-discharge payments at the threshold, with average post-discharge payments increasing from

approximately $10,000 to $20,000. There is a small change in the opposite direction for patients

initially discharged upstream. For longer lengths of stay, the figure becomes noisy due to the small

number of discharges.

Figure 4 suggests a simple model of LTCH behavior, which motivates the model we present in

Section 4. Prior to the threshold, retaining patients is profitable, and only the healthiest patients are

discharged to SNF/IRF or to their home and only the sickest patients are discharged to an ACH or a

hospice. After the threshold, on the downstream margin, LTCHs work “down the distribution”and

discharge less healthy patients, increasing post-discharge payments on average. Similarly, on the

upstream margin, LTCHs work “up the distribution,”discharging patients who are in better health,

and decreasing post-discharge payments on average. The marginal patient discharged downstream

at the threshold is therefore sicker than the average patient discharged downstream prior to the

threshold, while the marginal patient discharged upstream is slightly healthier than the average

patient discharged upstream in prior days. As we discuss more in Section 4, Figure 4 also suggests

the need for a dynamic model —in which health evolves over time and LTCHs make daily discharge

decisions based on the patient’s contemporaneous health —rather than a static model in which the

hospital commits to a pre-specified length of stay at the time of LTCH admission.

3.3. (Lack of) Mortality Effects

A natural question raised by the discharge patterns is whether the distortions in the timing of

discharges have an impact on patient health and in particular on mortality. Since the 90-day

mortality rate of LTCH patients is approximately 30% (Table I), if these distortions are harmful

to health, it seems plausible that we might be able to pick up an effect with our data.

Empirical identification of mortality effects from the distortion in patient location at the thresh-

old is challenging, however. Health evolves according to a stochastic process, with sicker patients

having a higher probability of death. Distortions to the location of care might impact the level

of someone’s health, generating an on-impact effect on the probability of death analogous to the

on-impact effect on discharges we detected. However, distortions to the location might also affect

the stochastic process for health, which would be associated with a longer-run change in mortality

rate, but might not have an immediate mortality effect. We therefore attempt to examine not only

whether there is an immediate impact on mortality at the threshold, but whether we can detect

any longer-run changes.

in the next section.
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The bottom right panel of Figure 3 —which plots daily mortality rates within the LTCH by

patient length of stay — shows that mortality rates among patients in the LTCH are declining

over the course of the LTCH stay with little difference around the SSO threshold. However, in-

terpretation is complicated by selection. As the sickest patients die, the remaining patient pool is

healthier, which presumably contributes to the downward mortality trend. And since LTCHs are

differentially discharging healthier patients at the SSO threshold, the composition of patients who

remain at the LTCH after the threshold is different, making it tricky to disentangle any potential

treatment effects on mortality at the threshold from changes in the selection of patients remaining

at the LTCH at the threshold.

To circumvent this issue, we take advantage of the fact that, as we noted in Section 2.3, our

data also allow us to track mortality outcomes for patients even after their LTCH discharge. Figure

5 therefore analyzes mortality patterns in the days post LTCH-admission, unconditional on the

patient’s current location. Conceptually, our mortality analysis follows the logic of a reduced form

regression, where the mortality hazard is the outcome, discharge patterns are the endogenous

variable, and the SSO threshold is the instrument. In particular, since we know there is a sharp

jump in discharge patterns at the threshold (analogous to a large first stage), if there is a change

in the level or slope of the mortality hazard at the threshold (that is, non-zero reduced form), we

can infer that the distortion in discharge location has an impact on mortality.

The top panel of Figure 5 —which shows daily mortality rates by days since LTCH admission

— is thus similar to the bottom right panel of Figure 3, but uses the full set of LTCH patients

(unconditional on their location) rather than only those who have yet to be discharged. As before,

“natural selection”leads mortality rates to decline over time, but we now can interpret more cleanly

the mortality pattern around the SSO threshold. The plot shows no obvious evidence of a change in

the level of mortality hazard in the vicinity of the threshold during the PPS period. In Appendix

C, we examine this mortality pattern more formally using a regression discontinuity design and

similarly fail to reject the null of a smooth mortality hazard around the SSO threshold.13 These

findings are consistent with no mortality effect but do not allow us to rule out a gradual effect that

would not appear sharply in the data.

If distortions in the location of care affected the stochastic process for health, we might not

observe an immediate effect, but would see a change in mortality over a longer time horizon. The

bottom panel of Figure 5 attempts to look for a more gradual effect by plotting a 30-day mortality

rate (again unconditional on the patient’s current location), by days since LTCH admission, where

the 30-day mortality hazard measures the share of patients who are alive on a given day but

die during the subsequent 30 days. The plot once again shows no effect around the threshold,

suggesting that there are no gradual effects of the distortion in location on mortality. In Appendix

C, we present a regression discontinuity analysis that more formally confirms this result.

Figure 5 thus suggests little evidence of a quantitatively large effect on mortality that is created

13Our baseline estimate (shown in column (1) of Table A.III) allows us to rule out with 95% confidence a daily

mortality increase of more than 0.05 percentage points and a daily mortality decline of more than 0.04 percentage

points (off of a base of 0.6 percent).
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by the sharp changes in discharge behavior at the SSO threshold. To supplement this analysis we

also test for mortality effects using variation over time in the location of the SSO threshold within

DRGs; Eliason et al. (forthcoming) similarly exploit this variation to examine how changes within

DRG in the SSO threshold affect discharge behavior. Recall that the SSO threshold is determined

as five-sixths of the geometric mean length of stay in the prior year. During our 2007-2012 sample

period, about 80% of (stay weighted) DRGs experience at least one change in the SSO threshold,

typically a shift of a single day. We use these changes in the SSO threshold —which occur for

different DRGs in different years, roughly evenly distributed across the sample years —to examine

the mortality effects of length of stay in a difference-in-differences framework. In particular, we

collapse our data to the DRG-year level and estimate regressions of the form

ydt = αsSSOdt + τ t + κd + εdt, (1)

where ydt is the average outcome for DRG d in year t, SSOdt is the SSO threshold associated with

DRG d in year t, τ t and κd are year and DRG fixed effects respectively, and εdt is the error term.

We estimate a first stage regression that relates changes in the SSO threshold within DRGs to

changes in the average length of stay within DRGs. We also estimate reduced form regressions that

relate changes in the SSO threshold to changes in mortality within 30-, 60- and 90-days of LTCH

admission, and IV regressions that relate length of stay to mortality, instrumenting for length of

stay with the SSO threshold.

Figure 6 displays the results. In each panel, the horizontal axis shows the SSO threshold net

of year and DRG fixed effects. The vertical axis shows various outcome variables, also net of year

and DRG fixed effects. The graphs show scatter plots of the data, aggregated by ventiles of the

horizontal axis variable; they also show the slope coeffi cient αs estimated by equation (1).

The top left panel shows that there is a strong first stage relationship, with a one-day increase

in the SSO threshold raising the average length of stay by 0.3 days (standard error = 0.07).14 The

three other panels of Figure 6 show the relationship between mortality and the SSO threshold.

Table A.IV shows the corresponding IV estimates of the impact of length of stay on mortality,

where we use the change in the SSO threshold as an instrument for length of stay. The estimated

effects of length of stay on mortality are negative but statistically insignificant, with the point

estimates ranging from a 0.45 percentage point decline in 60-day mortality to a 0.0 percentage

point change in 30-day mortality. Because baseline mortality rates are high, we can reject fairly

small proportional effects. For example, relative to a 90-day mortality rate of 30.6%, our estimates

allow us to rule out mortality declines greater than 4.3% or mortality increases greater than 1.8%

with 95% confidence interval.

Overall, while these results provide no “smoking gun” evidence of patient harm, they do not

allow us to comprehensively rule out negative health effects. And even if an average mortality

impact can be ruled out, it may mask important heterogeneity, so we would still not be able to

14LTCHs might respond to the change in SSO threshold by admitting more or fewer patients, which would com-

plicate the analysis, especially if there was a change in the composition of admitted patients. However, we find no

evidence that the number or mix of admissions vary in response to changes in the SSO threshold (not reported).
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rule out mortality effects for every type of patient or at each and every hospital. In addition, we

cannot rule out adverse health effects that would not manifest in higher mortality rates. While it

may be tempting to analyze the effect of LTCH length of stay on other health-related outcomes,

non-mortality health outcomes are tracked and measured differentially based on location of care,

and are thus likely to be mechanically related to the length of the LTCH stay.15

Still, we view the mortality analysis as suggestive that the marginal patients affected by the PPS

payment schedule are likely able to receive similar care —as measured by mortality —whether they

are located in an LTCH or in an alternative setting, which empirically is usually a SNF. Two other

pieces of evidence are consistent with this interpretation. First, we showed earlier that the patients

who are most affected by the SSO threshold are disproportionately healthy, and thus potentially

less sensitive to variation in the location of care. Second, using a different empirical design that

studies the impact of LTCH entry into regional healthcare markets, we find that LTCH entry leads

to substantial substitution from SNFs to LTCHs, but no mortality impact, again suggesting that

marginal patients can receive appropriate care at both types of facilities (Einav, Finkelstein, and

Mahoney 2018).

4. QUANTIFYING THE IMPORTANCE OF FINANCIAL IN-
CENTIVES

The results in the last section provide descriptive evidence of the response of LTCHs to the sharp

financial incentives associated with the SSO threshold. These patterns motivate the discharge

model that we now specify in order to assess how these patterns would change in response to

counterfactual financial contracts that do not exhibit such sharp incentives.

4.1. The Importance of Dynamics: Intuition and Motivation

It is natural to think of a hospital discharge decision as a dynamic discrete choice problem. Every

day the LTCH assesses the patient’s health and decides whether to retain and treat the patient at

the LTCH or discharge the patient to another location, where the patient might receive different

medical treatment. To develop intuition, we assume for now that the hospital cares only about

maximizing profits. We will relax this in our baseline model below.

The LTCH decision is asymmetric and resembles an optimal stopping problem. If the patient

is discharged, the hospital has no subsequent decision to make, as it loses control over the patient.

However, if the patient is retained for an extra day, the hospital obtains the flow costs and benefits

associated with treating the patient for an extra day, as well as the costs and benefits associated

with the option value of making the optimal decision the next day.

15For instance, hospital-acquired infections are measured at facilities, but not at home. All else equal, a patient

who has a longer hospital stay is more likely to acquire a hospital-acquired infection even if their health would have

been the same if their hospital stay were shorter.
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This dynamic option value is particularly important in light of the sharp jump in payments at

the SSO threshold. To gain intuition, consider an overly simplified setting in which the LTCH’s

cost of treating each patient is c per day, and its revenues are given by p ≈ c for each day prior

to the SSO threshold, P ≈ 10p� p at the day of the threshold, and zero thereafter. Assume also

that, with some relatively low probability, in any given day there is an exogenous probability the

LTCH is forced to discharge the patient (e.g., due to mortality or a relapse) or forced to retain her

(e.g., because a family member is not available to transport her home).

From the LTCH’s perspective, there are three qualitatively different periods. First, consider the

period after the SSO threshold: the patient generates cost and no revenues, so the hospital has no

incentive to retain the patient unless it has to. Indeed, as we saw in Figure 3, hospitals discharge

their patients fairly rapidly after the SSO threshold has passed. Second, on the day at which the

SSO threshold hits, the hospital has a very strong (static) incentive to retain the patient, and thus

would hold on to the patient unless forced to discharge her. Finally, prior to the SSO threshold, the

hospital does not have strong static incentives to retain or discharge the patient (recall, we assume

p ≈ c in this example), yet it faces dynamic incentives to keep the patient until the SSO threshold
in order to obtain the large payment P .

How strong are these dynamic incentives to retain patients prior to the SSO threshold? Let

VSSO � 0 denote the financial value associated with LTCH patients who make it to the SSO

threshold; in other words, VSSO is the financial reward P ≈ 10p minus the (significantly lower)

expected cost associated with the 8.3 days (on average) that patients remain in the hospital after

the SSO threshold. Prior to the SSO threshold, the dynamic incentives to retain the patient are

VSSO ·Pr(LOS ≥ SSO|LOS ≥ t), the financial benefit from reaching the SSO threshold multiplied

by the probability the patient reaches the threshold. Obviously, the probability is increasing with

t, so the incentives to retain a patient are higher as the SSO threshold gets closer. However, with

negligible discounting due to time, and a relatively low probability of exogenously losing the patient

(approximately 2% in the baseline sample), the probability term is fairly large, and the dynamic

incentives prior to the SSO threshold are not substantially lower than the static incentives at the

SSO threshold.

It is useful to contrast this simple framework with a myopic model of LTCH behavior in which

dynamic considerations are ignored. In a myopic model, LTCHs would experience a sharp increase

in the financial incentives to retain a patient between the SSO day and the day that immediately

precedes it, leading to a sharp decline in the discharge rate. As can be seen in Figure 3, the data

provide no evidence of such a pattern, with daily discharge rates at the SSO day and the days

that precede it being essentially the same, which is consistent with the (overly) simplified dynamic

incentives sketched above. Below, we will show more formally that a myopic model does not fit

well the discharge patterns we observe.

We can also contrast our dynamic model with a completely static model in which the hospital

commits to a specific length of stay at the time of LTCH admission. This type of static model is

not a good descriptive model of our environment; LTCHs maintain flexibility and make discharge

decisions on an ongoing daily basis. The key drawback of committing to a specified future discharge
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date is that the hospital “ties its hands”and is not able to respond to future information. Such

information is not consequential in the setting described above but becomes important once we

enrich the simple framework and allow the health of LTCH patients to evolve stochastically, as we

do in our baseline model below. As we showed in Figure 4, there is a clear relationship between

the average health of discharged patients (as proxied by their post-discharge costs) and the timing

and destination of discharge. Once health is heterogeneous, and evolves stochastically over time,

the health status at the time of admissions is not very predictive of health status at the time of

discharge, preventing a static model from matching this relationship. Again, we will show this more

formally below.

4.2. A Model of Dynamic Discrete Discharge Choice

Our baseline model, which we present here, builds on the intuition above, relaxing some of the

assumptions and allowing for heterogeneous, stochastically evolving patient health.

Consider a patient i who is admitted at day t = 0 to LTCH l. We index patient i’s health at

the time of admission by hi,0, and assume that hi,t (conditional on patient i staying at LTCH l)

evolves stochastically from day to day. Specifically, we assume that hi,t follows a monotone Markov

process, such that hi,t ∼ F (·|hi,t−1) with F (·|h) stochastically increasing in h.16 We use higher

values of h to indicate better health, so the daily mortality hazard m(h) is strictly decreasing in h.

Hospital l’s flow (daily) monetary profits from patient i (whose health is given by h) during the

tth day since admission is given by

π(h, t) = p(t)− c, (2)

where p(t) is the hospital’s revenue, which depends on CMS’reimbursement schedule for patient

i, and c is the hospital’s daily cost of treating each patient. An important assumption in this

specification is that daily costs c are constant and do not vary with the patient’s health.17

Our focus is on the hospital’s discharge decision. Following our descriptive analysis, we consider

two alternative destinations for patient i, downstream and upstream, so that every day the hospital

makes a choice between keeping the patient overnight in the LTCH (l), discharging her downstream

(d), or discharging her upstream (u). The hospital’s non-monetary payoffs every day are given by

uj(h) = vj(h) + σεεijt for j = l, d, u, (3)

16 In sensitivity analysis reported in Appendix F, we examine the robustness of our findings by allowing the health

process to vary with time since admission.
17While one may be worried that sicker patients are more costly, we view the homogeneous cost assumption as a

reasonable approximation for several reasons. First, large components of LTCH cost structure are unlikely to vary

much with the health status of the patient occupying the bed. These health-invariant costs include the equipment and

personnel associated with the bed and the shadow cost of capacity constraints. Second, in the implementation below

we will examine empirical patterns across DRGs; any health-related variation in costs across DRGs will therefore be

captured as long as the DRG-specific payment rates reflect this variation (as they are designed to). We have also

verified that the quantitative implications of allowing cost to vary with health are relatively minor in the context of

our counterfactual exercises.

17



where j = l, d, u is the location in which the patient stays that day, vj(h) captures hospital l’s value

from having the patient staying at location j (which can be viewed as the part of the patient’s

utility that is internalized by the hospital), and εijt is an error term, which is distributed i.i.d. type

I extreme value and scaled by the parameter σε. The error term presumably captures idiosyncratic

considerations associated with the patient and/or the hospital. Moreover, because hospital l loses

control over the patient upon discharge, it will be convenient to denote by V j(h) the present value

to hospital l of the patient’s utility from being discharged to destination j = d, u.

This setting lends itself to a simple dynamic programming problem, which can be represented

by the following Bellman equation:

V (h, t) = π(h, t) + δ (1−m(h))E

max


ul(h) +
∫
V (h′, t+ 1)dF (h′|h),

ud(h) +
∫
V d(h′)dGd(h′|h)

uu(h) +
∫
V u(h′)dGu(h′|h)


 , (4)

where δ is the LTCH’s (daily) discount factor. The two state variables are the health of the patient

(h) and the number of days since LTCH admission (t). While we did not find a mortality effect in

our descriptive analysis, by allowing the health process outside the LTCH to evolve according to

Gd(·|h) and Gu(·|h), instead of F (·|h) within the LTCH, our model allows patient health to evolve

differentially across alternative locations of care.

It is convenient to benchmark vj(h) against the LTCH value from having the patient stay at

the LTCH. That is, we normalize vl(h) = 0 for all h, and normalize V j(h) accordingly. Applying

these adjustments and using the well-known expression for the logit’s inclusive value, we can write

the problem as

V (h, t) = p(t)−c+δ (1−m(h))σεln

{
exp

(∫
V (h′, t+ 1)dF (h′|h)

)
+ exp

(
V d(h)

)
+ exp (V u(h))

}
.

(5)

Finally, we note that the state variable t only affects the problem through the hospital revenue

function p(t), and p(t) = 0 for all t > SSO, so the problem becomes stationary after the SSO

threshold, and the solution is simply a fixed point of

V t>SSO(h) = −c+δ (1−m(h))σεln

{
exp

(∫
V t>SSO(h′)dF (h′|h)

)
+ exp

(
V d(h)

)
+ exp (V u(h))

}
.

(6)

We can therefore solve the dynamic problem by first solving for the fixed point associated with the

post-SSO stationary part of the problem given by equation (6), and then iterating backwards until

t = 0 using equation (5).

4.3. Parameterization and Estimation

Parameterization. We make several additional assumptions before we take the model to the
data. The first is about the health process. Given that mortality is monotone in h, it is convenient

to normalize the health index by mortality risk. We do so by assuming that h is defined by its
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associated mortality hazard using the following relationship:

m(h) = 1− Φ(h), (7)

where Φ(·) is the standard normal CDF. We note that h is an index so the above is simply a
normalization, which endows h with a cardinal measure. Equipped with this normalization, we

then make parametric assumptions about the initial health distribution (as of LTCH admission,

t = 0), and about how the health process evolves over time within the LTCH. Specifically, we

assume that hi,0 is drawn from N(µ0, σ
2
0) and that F (·|hi,t−1) follows an AR(1) process:

hi,t = µ+ ρhi,t−1 + εi,t, where εi,t ∼ N(0, σ2). (8)

In our baseline specification, we allow the health process inside the LTCH to be different in the

pre-PPS and PPS periods, in order to accommodate potential differences in the LTCH patient

mix; these may result from the growth of the LTCH sector, time trends in medical technology and

practice, or directly from the change in financial incentives. Note that we do not need to model the

health process outside the LTCH since any effect of the post-discharge location on health would

affect the discharge decisions through its (unidentified) effect on the continuation values, V j(h),

which we do not model explicitly.

Second, we approximate V u(h) and V d(h) using a linear function in h, so that

V j(h) = υ0j + υ1jh for j = d, u. (9)

Recall from Section 3 that healthier patients (higher h), who are associated with lower mortality,

are discharged to d, while sicker patients (lower h), associated with higher mortality, are discharged

to u. It is therefore natural to expect υ1d > 0 and υ1u < 0. That is, all else equal, discharge

destination d becomes more attractive as health gets better (h is higher) and destination u becomes

more attractive as patients’health worsens (h is lower). As explained below, one of the intercept

terms υ0d and υ0u needs to be normalized, so we set υ0u = 0.

Third, as we discussed in Section 2, LTCHs are part of an interlocking post-acute care system,

with changes in LTCH incentives potentially affecting Medicare spending throughout the patients’

entire episode of care. In particular, Figure 4 shows sharp changes in both upstream and down-

stream post-discharge payments at the SSO threshold, indicating a relationship between patients’

health at discharge and total Medicare spending. To account for such spillovers in our counterfac-

tuals, we model the relationship between health at discharge and post-discharge payments as

P j(h) = exp(ζ0j + ζ1jh) for j = d, u, (10)

where P j(h) represents the post-discharge payments for a patient initially discharged to location

j = d, u with health status h at the time of discharge. We allow this relationship to vary by whether

the patient is initially discharged upstream or downstream and use an exponential specification so

that predicted post-discharge payments are strictly positive.
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Fourth, as is typical in these types of models, we set (rather than estimate) the daily discount

factor to δ = 0.951/365.18 Finally, to account for changes in cost over time, we deflate the costs

parameter c in the pre-PPS period by the ratio of reported administrative costs across periods, which

we estimate to be 0.75. Thus, overall we are left with 19 parameters to estimate: five parameters

(µ0, σ0, µ, σ, ρ) that are associated with the health distribution and the way it evolves over time in

the pre-PPS period, five corresponding parameters in the PPS period, the cost parameter (c), four

parameters (υ1u, υ0d, υ1d, σε) associated with the relative value of patients at facilities u and d, and

four parameters associated with post-discharge payments in the PPS period (ζ0d, ζ1d, ζ0u, ζ1u).

Estimation. An important decision is how to treat heterogeneity across patients, observable
health conditions, and LTCH hospitals. In our baseline specification, we abstract from such hetero-

geneity and instead model the “average”discharge decision as it pertains to the “average”LTCH

patient and the “average”payment schedule. That is, we pool all payment schedules observed in

the data, separately for the pre-PPS and PPS periods, measure each day in the schedule relative

to the DRG-specific SSO threshold in the PPS period (which is normalized to zero at the SSO

threshold), and construct the average payment schedule for each day, as shown in Figure 1. We

analogously pool the discharge patterns, separately for the pre-PPS and PPS periods, in a 61-day

window around the SSO threshold (from day -15 to day 45 as shown in Figure 3). We then estimate

our model in an attempt to match these average patterns.

An advantage of this approach of focusing on the average patterns, rather than the heterogeneous

patterns, is that it only requires us to solve the dynamic problem once (for each period, pre-PPS

and PPS), which is computationally attractive. Given that our primary focus is on the aggregate

effect of financial incentives across the entire LTCH sector, abstracting from the heterogeneity

across patients and hospitals is less likely to be consequential. Heterogeneity in the response is also

the focus of the related exercise reported by Eliason et al. (forthcoming).

We estimate the model using simulated method of moments, to match the daily mortality and

discharge patterns presented in Figure 3, as well as post-discharge payment moments that are

based on Figure 4. Specifically, we use two sets of moments. First, we use 183 moments for the

pre-PPS payment schedule, reflecting the daily discharge and mortality risks within the 61-day

window around the SSO threshold. One set of moments is associated with discharge rates to d,

another with discharge rates to u, and a third with mortality rates. We then construct another set

of 183 corresponding moments for the PPS period. Because much of the identification is driven

by the sharp change to discharge incentives at the SSO threshold, we assign greater weights to

moments that are closer to day zero (the SSO threshold) by making the weights decrease by a

constant amount (1/61) per day away from the threshold. The second set of moments uses the

data on post-discharge payments to allow us to capture spillover effects in our counterfactuals.

Specifically, we average post-discharge payments for each discharge destination (d or u), separately

for discharges before and after the SSO threshold. We then match them to the model prediction

18While having a discount factor so close to 1 might generally create convergence issues, in our Bellman equation

the probability of survival enters jointly with the discount factor so that the “effective discount factor”δ (1−m(h))
is not too close to 1.
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regarding the health status distribution of discharged patients, thus allowing us to link health and

post-discharge payments.19

Generating the model predictions requires us to solve the dynamic problem described in the

previous section for each set of parameters. To ease the computation, we approximate the health

process F (·|hi,t−1) with a discrete health space that evolves according to a Markov transition matrix
(Tauchen 1986).20 This eases the solution of the dynamic problem, and at the same time allows us to

read the discharge probabilities directly off the solution, without any need to integrate (presumably

by simulation) over potentially intractable integration regions.

4.4. Identification

The model specified above is closely related to a large family of dynamic discrete choice models

that have been studied extensively in the literature. Pakes (1986) is an early application of such

models, and Arcidiacono and Ellickson (2011) provide a recent review. In order to understand

the challenge of non-parametric identification of the model, it is probably easiest to discuss the

relationship between our model and the econometric framework studied in Hu and Shum (2012)

and in Hu et al. (2015). Our model presented above would map very closely to this framework if

we observed a variable that corresponds one-to-one to latent health hi,t.

In our setting the mortality rate is observed and plays a conceptually similar role to such a

variable, but because mortality is a binary variable it unfortunately does not have a one-to-one re-

lationship with the continuous health index, and therefore our model cannot be non-parametrically

identified. Instead, we rely on the parametric assumptions associated with the initial health distri-

bution and the AR(1) process for the evolution of health in order to identify the rest of the model.

Conditional on identifying the parameters that govern initial health and the way it evolves over

time, identification of the other parameters is reasonably straightforward.

In Appendix E, we provide many more details about the (parametric) identification of the model.

To provide intuition, it is useful to build up from the case when patient health is held fixed at a

given value of h and there is only a downstream margin of discharge. In this case, discharges are

characterized by three parameters: the scale parameter on the logit errors σε, the cost parameter

c, and the value of discharging the patient downstream υd.

We can use the jump in payments at the SSO threshold to separately identify the scale parameter

σε from the cost c and value of discharge υd parameters. Since we normalize the coeffi cients on net

profits (p(t)− c) to 1, the scale parameter σε can be thought of as the inverse “profits sensitivity”
of the LTCH. Prior to the SSO threshold, increasing σε reduces the option value of retaining the

patient until the jump in payments because the LTCH places less weight on the financial value of

the jump in payments, thus raising the value of discharging the patient. After the SSO threshold

19Because there is no variation in payments in the pre-PPS period, we do not have the variation in dischargees’

health that we need to identify the pre-PPS post-discharge payments model. Since we focus on the PPS period in

our counterfactuals, and therefore do not need these estimates, we do not estimate pre-PPS post discharge payments.
20 In particular, we approximate the health distribution with a grid of 250 evenly spaced values that span a range

of +/- three standard deviations around the mean of the steady state health process.
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profits are negative, so increasing σε makes retaining the patient not as bad, thus lowering the value

of discharging the patient. As a result, σε can be thought of as modulating the change in incentives

at the SSO threshold, with a higher value for σε resulting in a smaller change in discharges at the

jump in payments conditional on patient health.

In contrast, increasing the costs parameter c and increasing the value of downstream discharge

υd raises the value of discharging the patient both before and after the SSO threshold. Increasing

the cost parameter c reduces the net profits from retaining a patient at the LTCH, with an impact

that is proportional to the patient’s expected length of stay. Thus, a higher value for c raises the

incentive to discharge the patient in every period, and especially in the first few days when (holding

h fixed) the expected length of stay is longest. Increasing the value of downstream discharge υd
raises the incentives to discharge the patient, but unlike the effect of costs, the effect is fairly

constant over time. Thus, c and υd are separately identified because of their differential impact on

the first few days of the LTCH stay.

In summary, the scale parameter σε is separately identified from the costs c and υd because it

modulates the size of the shift in incentives to discharge at the SSO threshold, while the costs and

υd parameters are mostly affected by the level of discharge rates. They are separately identified

from each other because of the differential movement in the first few days of the LTCH stay. The

intuition for identification on the upstream margin is similar. Identification can be achieved from

the PPS moments alone, but given that we restrict these parameters to be time-invariant, it is also

aided by variation in discharge patterns between the pre-PPS and PPS periods.

If health status h were observed, we could make the argument above conditional on health,

and thus identify each object as a non-parametric function of h. In practice, h is unobserved,

but identifying the health process is conceptually easy given our assumptions. If there were no

discharges, which is roughly the case during the first week of the LTCH stay, the only attrition

from the sample would be due to mortality. With only five parameters that determine the initial

health distribution and how it evolves from day to day, mortality rates over five days are suffi cient

to identify the health process parameters, separately in the pre-PPS and PPS periods. Once the

unobserved health distribution is identified, we can integrate over h and apply a similar intuition

to the one we described above for the homogenous h case. Moreover, once the health process is

identified, the cross-sectional distribution of h varies over time in “known”ways, so we can also

identify how the key parameters —in particular the V s —vary as a function of h.

Finally, the parameters of the post-discharge payments model (ζ0d, ζ1d, ζ0u, ζ1u) are identified

by the sharp change in health of patients discharged on different sides of the SSO threshold. These

parameters essentially determine the mapping the model’s prediction regarding the average health

status of patients discharged before and after the SSO threshold to the corresponding average of

observed post-discharge payments, which also exhibit a sharp change around the SSO threshold

(Figure 4).

Obviously, as is typically the case, the intuition for identification requires us to have substantial

variation in the data. In practice, some of the variation is not as large, and statistical power issues

require us to impose more parametric structure, so the estimable model is not as flexible —especially
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in terms of the extent to which parameters vary with h —as the identifiable structure would be.

5. RESULTS

5.1. Parameter Estimates and Model Fit

Table III presents the parameter estimates. Our point estimate of c is $1,109, implying that LTCH’s

actual costs are 77.8% of the average pre-SSO daily reimbursement rate. The υ1u , υ0d, and υ1d
parameters capture the value the LTCH places on the patient’s utility from being discharged to u

or d relative to remaining at the LTCH, as well as any potential effect on patient health evolution

in the discharge location (relative to remaining at the LTCH). The estimates imply that LTCHs

are indifferent between u and d for a patient with h = 2.0, which is a fairly low health level.

For instance, h = 2.0 is the 4.3th percentile of the steady state PPS health (normal) distribution

(which has mean of 5.9 and standard deviation 2.3) and corresponds to a daily mortality hazard of

2.2%. Consistent with our description of patients flowing downstream as their health improves, d

is relatively better for healthier patients and u is better for sicker patients. The magnitude of the

slope parameter υ1d is about one-fifth as large (in absolute value) as the slope parameter υ1u, which

indicates that a given change in financial incentives will have a much larger effect on discharges on

the downstream margin. These estimates are consistent with the descriptive evidence that shows

a substantially larger response on the downstream margin at the SSO threshold.

Relative to the slope parameters υ1u and υ1d, the scale parameter σε on the logit error is fairly

small. The estimates imply that a tenth of a standard deviation increase in the error term increases

the value of discharging a patient to a given location by $104, the product of σε = 814 and a tenth of

a standard deviation of the logit error (π/
√

6). In contrast, a tenth of a standard deviation increase

in steady state health index (which has a standard deviation of 2.3) raises the value of discharging

a patient downstream by $1, 510 (= 0.1×2.4×6, 629) and lowers the value of discharging a patient

upstream by $7, 087 (= 0.1× 2.4× 31, 123), indicating that health status is capturing most of the

unobserved heterogeneity in discharge behavior.

The ζ parameters capture the relationship between health at discharge and post-discharge

payments in the PPS period. Consistent with our interpretation of Figure 4, the estimates indicate

that post-discharge payments are declining as the patient gets healthier, with semi-elasticities of

ζ1u = −0.77 and ζ1d = −0.28 on the upstream and downstream margins, respectively.

We are cautious not to over-interpret the change between the pre-PPS and PPS periods in the

health process parameters. Because they are the only parameters that are allowed to vary across

the time periods, they capture not only differences in the health of admitted patients but may also

reflect other factors that vary over time, such as changes in medical technology or the administrative

capacity of providers.

The model fits the data reasonably well. Figure A.5 presents our discharge moments and the

simulated moments from the estimated model. The model does a very good job fitting the spike in

discharges to u and d in the PPS period. This is particularly encouraging because this variation is
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a key source for identification. The model fit for the mortality patterns in the pre-PPS and PPS

periods is good over the initial days, but less good at longer time horizons. This is likely due to

our fairly parsimonious parameterization of the health process. The model fit is also poorer for

discharges to u in the pre-PPS period.

In Appendix D, we write down and estimate two non-dynamic alternatives to our baseline

model, which we discussed informally in Section 4.1 above: a myopic model and a completely static

model. We show that the fit of our baseline, dynamic model is substantially better than the fit of

either of the alternative, non-dynamic models.

5.2. Illustrating the Key Tradeoffs

Figure 7 provides some intuition for how the model operates, plotting the policy function at the

estimated parameters. Healthy patients (higher h) are discharged to d, while sick patients (lower

h) are discharged to u. Consistent with the descriptive evidence in Figure 4, LTCHs work “down

the distribution”at the jump and lower their discharge threshold on the d margin and conversely

work “up the distribution”on the u margin and increase the discharge threshold. The larger shift

on the d margin relative to the u margin relates directly to our discussion above on the magnitude

of the slope parameter estimates in Table III (υ1d and υ1u). The relatively small outward shift in

the policy function just before the SSO threshold is consistent with the descriptive results which

show limited evidence on “missing mass” immediately to the left of the SSO threshold. As noted

above, such “missing mass”would be expected in a myopic model, which would produce a sharp

decline in the discharge rate between the SSO day and the day that immediately precedes it.

Figure 8 unpacks the mechanism that gives rise to this policy function, providing intuition

for the model’s predictions. In the top panel, we display the LTCH’s choice-specific payoffs (i.e.,

continuation values) as a function of patient health and the number of days until the SSO threshold,

from day -15 through day 0. The dashed line on the left shows the value of discharging a patient

upstream, and the dashed line on the right shows the value of discharging a patient downstream;

these are linear in patient health (by assumption) and do not vary with the patient’s length of stay

(by design). The solid lines show the continuation value from retaining the patient at the LTCH;

these are non-linear in patient health and vary over days t = −15, . . . , 0, after which the problem

becomes stationary and the value is the same as at day 0 for all subsequent t.

In the bottom panel we show the probability of retaining the patient at the LTCH until the SSO

threshold as a function of patient health for days t = −15, . . . ,−1. Prior to the SSO threshold, the

value of retaining the patient is primarily driven by the probability of keeping the patient through

the SSO threshold and obtaining the large lump sum payment. As the bottom panel shows, even

well before the SSO threshold most patients (except for the very sick patients with low h) are kept

through the SSO threshold. Since there are only small increases in this probability from day to day,

there is almost no change in the cutoff points at which patients are optimally discharged upstream

or downstream; this explains why the policy function shown in Figure 7 is virtually flat prior to

the threshold. At the SSO threshold, the dynamic incentives disappear, and the continuation value
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of retaining the patient drops substantially (difference between day -1 and day 0 in top panel),

making discharge more appealing, and shrinking the range of health status in which it is optimal

to retain patients, as shown in Figure 7.

5.3. The Effects of Counterfactual Financial Incentives

We use our model to simulate discharge patterns and Medicare payments under a variety of coun-

terfactual payment schedules. Throughout this section, we assume that the initial distribution of

health of admitted patients stays the same but that the subsequent discharge decisions reflect the

incentives provided by the counterfactual payment schedules.

We limit our attention to alternative schedules that maintain the current practice of a cap

on payments after a certain number of days. We do this both because it respects the current

policy approach toward LTCH payments and because an “uncapped” schedule would lead to a

small number of long stays, which is outside of the variation in our data. Specifically, we consider

three main types of counterfactuals: payment schedules that remove the jump while holding the

threshold day constant, payment schedules that eliminate the jump (and allow the threshold day

to vary) while holding LTCHs harmless, and cost-based reimbursement at a constant per diem,

capped at 60 days. Throughout, we assume that these counterfactual payment schedules do not

affect patient mortality, consistent with both the in-sample evidence presented here and the out-

of-sample evidence of the impact of LTCH entry into a market in Einav, Finkelstein, and Mahoney

(2018).

Removing the jump. We start by considering two simple modifications of the baseline pay-
ment schedule that eliminate the jump in payments at the SSO threshold, but, like the baseline

PPS payment schedule, provide no payments on the margin for stays in excess of the SSO threshold.

Figure 9 plots these counterfactual payment schedules and the baseline schedule for comparison.

The top panel shows a counterfactual we call “higher rate per day,”which eliminates the jump by

increasing the per-diem payment from $1,380 to $2,145 prior to the SSO threshold but holds the

post-threshold payment fixed. The bottom panel shows a counterfactual schedule we call “lower

cap,”which eliminates the jump in payments at the SSO threshold by reducing the PPS payment

from $34,319 to $22,074 but holds the pre-SSO per diem payment fixed. The “higher rate per

day”contract is weakly more generous than the baseline schedule, while the “lower cap”contract

is weakly less generous.

We use our model to simulate discharge patterns and Medicare payments under these two

counterfactuals. Figure 10 shows the policy functions under each payment schedule and the corre-

sponding discharge patterns. Table IV summarizes the impact of each of these payment schedules

on Medicare payments to LTCHs and to other facilities; Appendix F assesses the sensitivity of these

results to alternative specifications.

The black dashed line in the top left panel of Figure 10 shows the policy function under the

“higher rate per day”counterfactual. During the first few days, the policy function is similar to that

under the observed schedule. However, as the length-of-stay increases, the elimination of the jump
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reduces the incentive to retain patients, and the policy function shifts inwards on the upstream

and downstream margins. The black dashed lines in the other panels of Figure 10 show discharge

patterns under this counterfactual. Mirroring the changes in the policy function, the “higher rate

per day”counterfactual increases discharges in the 10 days prior to the SSO threshold, relative to

the observed schedule. As shown in column (2) of Table IV, these higher discharge rates reduce

average length of stay by 1.9 days or 7.1%.21 Eliason et al. (forthcoming) report a similar exercise,

and obtain qualitatively similar result.22

Despite the significantly higher per-day payments prior to the jump ($2,145 versus $1,380),

Medicare payments to LTCHs increase by a very small amount of $362 or 1%. The small increase

is due to a large behavioral response to the incentives. Holding discharge patterns fixed, LTCHs

would get paid about 50% more per day for stays below the SSO threshold, but in response to the

elimination of the jump, patients are now discharged earlier, so overall payments are lower. Holding

discharge patterns fixed, we calculate that the mechanical effect of this counterfactual is a $1,748

increase in Medicare payments to the LTCH, implying that the behavioral response to the removal

of the jump reduces Medicare payments to the LTCH by $1,394 per admission. LTCH profits per

admission rise by $2,441 or 35% relative to the observed schedule.

We next explore the effects of the “lower cap”payment schedule. The grey line in the top left

panel of Figure 10 shows the policy function under this counterfactual. The elimination of the

jump in payments shifts the policy function inwards during the entire pre-threshold period, relative

to that under the observed schedule. The grey lines in the other panels of Figure 10 show that

discharges correspondingly rise, with the daily share of discharges to d increasing four-fold and the

share of discharges to u increasing more modestly over most of the pre-threshold period. As shown

in column (3) of Table IV, average length of stay is reduced by 4.5 days, and payments to the

LTCH are reduced by $11,967 or 43%. The mechanical effect (holding observed discharge patterns

fixed) of the “lower cap”payment schedule is a reduction in payments of $8,851 or about 74% of

the overall reduction, with the remaining 26% due to the behavioral response. LTCH profits per

admission fall by $7,030 per admission and are estimated to be negative, a point we return to below.

The remaining rows of Table IV consider the impact of these counterfactual payment schedules

on Medicare payments throughout the rest of the episode of care. For these counterfactuals, the

spillovers on post-discharge payments are small. For the “higher rate per day”counterfactual, post-

discharge payments for patients discharged to u and d are affected by a few hundred dollars. For

the “lower cap” counterfactuals, the decrease in post discharge payments is larger but still small

compared to decrease in LTCH payments. Combining the effects on LTCH payments and post-

21Length of stay is measured from day -15. Because the average SSO threshold in our sample is 22.5 days, values

for length of stay need to be increased by 7.5 (=22.5-15) days to match the summary statistics.
22Specifically, Eliason et al. (forthcoming) report on a “per-diem counterfactual,” which is very similar to our

“higher rate per day” exercise. They find a similar length of stay effect (1.25 days shorter, relative to our 1.9

estimate) and a modest effect on total Medicare cost. It is important to note that the comparison is imperfect: the

counterfactual is not exactly the same, the model and the observation periods are slightly different, and they focus

on the most common DRGs while we use all LTCH admissions.
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discharge payments, our estimates indicate that the “higher rate per day”has virtually no effect

on total Medicare payments ($74 increase) and the “lower cap”reduces total Medicare payments

by a substantial $12,456 or 26%.

While interesting, neither of the above counterfactuals is fully satisfactory. While the “lower

cap”counterfactual suggests that alternative payment schedules could substantially reduce Medicare

payments, the large decrease in LTCH revenue (and in estimated profits) might have unintended

consequences. For instance, under this payment schedule, LTCHs might cut back on socially valu-

able fixed investments or even exit the market. In contrast, the “higher rate per day”counterfactual,

while clearly making LTCHs better off, has virtually no effect on Medicare payments. Yet, these two

exercises suggest that there might be “intermediate”contracts that generate cost savings without

the risk of unintended consequences. We explore such counterfactuals below.

“Win-win”payment schedules. With the above considerations in mind, we now consider a
set of counterfactuals that hold LTCH revenue fixed under the observed discharge patterns. Faced

with these contracts, if LTCHs do not change their behavior, they will have identical revenue, costs,

and profits as they would under the observed payment schedule. If LTCHs change their behavior,

by revealed preferences, they must be (weakly) better off. Therefore, by design, these contracts

should not have a negative impact on LTCHs.

In the same spirit as the previous counterfactuals, we consider contracts that pay a constant

per-diem amount up to a threshold length of stay, at which point the payments are capped and per

diem payments drop to zero (obviously, with no jump). We consider contracts where the payment

is capped at thresholds in a +/- 10 day range on either side of the current SSO threshold day. Since

the generosity of the contract is strictly increasing in the per diem rate, for a given length of stay

at which payments are capped, there is a unique payment schedule that holds LTCH revenue fixed

under the baseline discharge patterns.

The top panel of Figure 11 plots a set of these contracts, where to avoid overcrowding the

figure, we show payment schedules for only a subset of the 21 contracts considered. The bottom

left panel of Figure 11 plots LTCH payments against total Medicare payments (including estimated

post-discharge payments) for each of the contracts we consider, while the bottom right panel plots

estimated LTCH profits against total Medicare payments. For comparison, both plots also show

outcomes under the observed payment schedule.

The figures indicate that there is a broad set of “win-win” payment schedules that reduce

total Medicare payments for the episode of care while leaving LTCHs (weakly) better off. Every

counterfactual contract with a threshold between -8 and 8 days reduces Medicare spending, although

there is substantial heterogeneity in the reduction. LTCH revenues increase for every contract with

a threshold of 6 to 10 days and decline for contracts with a threshold of -10 to 5 days. Because

LTCHs value both profits and patient utility, LTCH profits under counterfactuals do not necessarily

increase. LTCH profits are higher than their baseline level for contracts with a threshold -10 to

2 days and are lower for thresholds of 3 to 10 days. Counterfactuals that decrease profits do not

lower them by a substantial amount.

The counterfactual with payment threshold of 1 day more than the current SSO threshold results
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in the largest reduction in Medicare spending and is a natural contract to focus on. Column (4) of

Table IV shows outcomes for this contract. Under this payment schedule, Medicare payments to

LTCHs are reduced by $1,655 or 5.9%. Accounting for Medicare payments across the entire episode

of care leads to somewhat higher savings of $2,127, or 4.4% of total episode payments. Despite the

reduced payments, LTCH profits rise by $315 per stay or 4.5%: the decline in LTCH revenue is

offset by lower costs, as length of stay is almost 2 days (7%) shorter.

Cost-based payment schedules. The last two columns of Table IV report results from two

additional counterfactuals that explore cost-based reimbursement at a constant per diem rate. The

first counterfactual pays LTCHs a constant per diem of their estimated costs, which is $1,091 per

day. The second counterfactual pays LTCHs a constant per diem of $507, which is the average per

day payment to SNFs during the post-discharge period. We think about this counterfactual as a

form of “reference based pricing”where Medicare pays LTCHs the opportunity cost to Medicare

of the patient —i.e., the amount Medicare would have incurred for the patient at a location that

provides fairly similar care (at least for the marginal patient). To avoid extrapolating too far outside

of our data, for both of these counterfactuals we cap payments after 60 days, which leads LTCHs

to discharge virtually all of their patients within 90 days of the current SSO threshold.

Paying LTCHs their estimated costs leads to a substantial $6,026 increase in payments to LTCHs

and a smaller $2,509 overall increase in total Medicare payments. Payments increase because LTCHs

retain patients for longer time periods rather than discharging them to SNFs where Medicare

payments would be lower, with average length of stay increasing from 19.2 to 32.0 days. Paying

LTCHs the average per-diem for SNFs leads to a massive decrease in LTCH payments and total

Medicare payments, accompanied by a sharp reduction in length of stay. Of course, concerns about

unintended consequences, which we discussed in the context of the “lower cap”schedule, are also

relevant here.

6. CONCLUSIONS

In this paper, we examined the impact of provider financial incentives in post-acute care (PAC),

a setting with large stakes both for the government budget and patient health that has received

scant attention in the academic literature. Within the context of PAC, we examined the impact of

a jump in Medicare payments to long term care hospitals (LTCHs) that occurs after a pre-specified

length of stay, when reimbursement shifts from a per diem rate to a lump sum payment.

The descriptive evidence showed a large response by LTCHs to the jump in payments. At

the threshold, there is a large spike in discharges. The marginal patient affected by the payment

threshold is relatively healthy. We are unable to detect any impact on patient mortality at the

threshold, even in this high-mortality population.

This descriptive evidence motivated our specification of a stylized dynamic model of LTCH

discharge behavior. We estimated the model and used it to examine the implications of alterna-

tive payment schedules, including “win-win” contracts that hold LTCHs (and presumably their

patients) harmless, while reducing Medicare payments. The contract with the largest Medicare
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savings reduced total Medicare payments by nearly 5% while increasing LTCH profits by a similar

percentage.

We also considered more aggressive payment schedules that resulted in substantially higher

Medicare savings but raised the possibility of unintended consequences due to a large reduction in

LTCH profits. In particular, in our model we take admission to the LTCH as given and focus on

the impact of counterfactual policies for this fixed set of patients. However, the large reduction in

profits brought about in our more aggressive counterfactuals may affect which patients are admitted

to an LTCH and might have even broader effects on the market, for instance through LTCH entry

and exit decisions. We consider an important area for further work to move “up” the healthcare

pathway and model the ACH’s decision of whether to discharge a patient to an LTCH or another

PAC provider.

More broadly, our results indicate how economic models and data can be combined to better

inform contract design. A small dose of common sense is suffi cient to see that the sharp jump

in payments at the threshold is ineffi cient, and that some alternative payment schedule should

be better for both the Medicare payer and the LTCH. Data and descriptive evidence, however,

were important to demonstrate that the behavioral response by the LTCH to the current payment

schedule was quantitatively meaningful, and an economic model —parameterized and estimated on

the data —was necessary to identify specific “win-win”contracts that could create opportunities for

both LTCHs and Medicare to gain. While naturally our results are specific to our particular setting,

we hope that this type of approach can inform future work examining the impact of providers’

financial incentives not only for the directly affected provider but throughout the healthcare system.

APPENDIX A: POST-DISCHARGE PAYMENTS AND DAYS

Our starting point of the analysis is an admission to an LTCH. We can observe all discharge

destinations from an LTCH. Table A.I shows the share of discharges to different locations. In the

PPS period, 13% of patients die during their LTCH stay, another 14% are discharged upstream (with

the vast majority going to inpatient care) and 73% are discharged downstream (with approximately

half of these patients going to a SNF/IRF and 45% going home, where they may receive care from

an HHA).

We define a post-discharge “episode of care” as the spell of almost continuous days following

discharge from an LTCH with Medicare payments to an ACH, SNF/IRF or LTCH. In particular,

the episode ends if there are at least two days without Medicare payments to these institutions.

Although in the MedPAR data we can observe all discharge destinations, we can only observe

post-discharge Medicare payments and days for ACH and for PAC facilities (SNF, IRF, LTCH),

but not for home health visits or hospice. To address the fact that we do not observe payments or

days at HHAs or hospices, we supplement the MedPAR data with annual spending and utilization

from the Beneficiary Summary File (BSF) Cost & Use file. For every stay in the MedPAR data, we

observe whether the patient was discharged to an HHA or hospice at some point in the episode of

care. For patients who were discharged to an HHA or hospice, we impute the patient’s payments
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and days using the annual BSF data. In practice, HHA and hospice payments are quite small as a

share of the total. For example, we estimate that of individuals with an LTCH discharge, LTCH

and SNF/IRF payments constitute over 90% of total PAC payments, with home health accounting

for only 8%.

Since these annual amounts include some payments and days that occur before or after the

“episode of care,”our imputation likely leads us to overestimate post-discharge Medicare payments

and days. However, we think that the approach provides a reasonable approximation. Table A.II

shows that our estimates of post-discharge payments and facility days are not affected much if we

instead impute 0 costs for HHA and hospice, and 0 days for hospice.

APPENDIX B: LTCH PAYMENT SYSTEMS

Prior to fiscal year 2003 (i.e. October 2002), CMS reimbursed LTCHs on a cost-based system. At

the start of fiscal year 2003, CMS began transitioning LTCHs to a prospective payment system

(PPS). The PPS, which was fully phased in by the start of fiscal year 2008 (i.e. October 2007), is

the focus of our study. This appendix describes it in more detail, drawing heavily on Kim et al.

(2015), Medicare Reimbursement Reference Guide (2015), and MedPAC (2014).

B.1. LTCH PPS rules

In contrast to the cost-based system, which had reimbursed hospitals based on the estimated cost of

each patient’s case, the PPS outlined a fixed reimbursement amount for each patient, based on the

patient’s DRG. These DRG-based lump-sum payments were meant to reflect the typical resources

consumed by each type of patient. However, in order to discourage short stays in hospitals which

were meant to provide long-term care, the PPS includes a short stay outlier (SSO) threshold, with

reduced payments below the full DRG payment for LTCH patients who are discharged before a

DRG-specific threshold.

Full DRG payment. The full DRG payment is computed as

Full DRG Payment = Adjusted Federal Rate x DRG Relative Weight, (A1)

where

Adjusted Federal Rate = (Unadj. Federal Rate x Labor-Related Share x Wage Index) +

+ (Unadj. Federal Rate x Nonlabor-Related Share). (A2)

This payment structure is similar to the much-studied Inpatient PPS used for (regular) acute

care hospitals (ACHs) that was introduced in 1983, but differs in two ways. First, although the

DRGs are defined in the same way for the LTCH and Inpatient PPS, the relative weights associated

with DRGs have different values in LTCH-PPS. Second, the LTCH-PPS unadjusted federal rate is

larger than the corresponding Inpatient PPS value. The result is that LTCH-PPS payments are
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substantially greater than Inpatient PPS payments for the same DRG, presumably to reflect the

greater costs at an LTCH relative to an ACH.23

Short stay outlier (SSO) payment. If an LTCH stay has a length of stay (LOS) shorter than
or equal to five-sixths of the geometric average length of stay (ALOS) for the DRG, it is paid as a

short stay outlier. We call the smallest integer greater than five-sixth of the geometric ALOS the

SSO Threshold. The SSO threshold is constant within a DRG-PPS Rate Year (with the exception

of 2009).

A short stay outlier is paid the lowest of the following:

1. Full DRG Payment.

2. 120% of the DRG per diem amount times the length of stay, where the DRG per diem amount

is defined as the ratio of the full DRG payment to the geometric average of the LOS for that

DRG. This option is roughly equivalent to a linear interpolation of the full DRG payment

between Day 0 and the SSO Threshold.24

3. 100% of the cost of the case, which is computed as total charges multiplied by the facility-

specific cost-to-charge ratio.

4. A blend of the Inpatient PPS amount (used at ACH) and 120% of the DRG per diem amount.

Note that this option converges to option 2 as LOS increases.

B.2. Empirical payment schedules

PPS payment schedule. We use a commercial software offered by the company 3M (the product

is called “Core Grouping Software”(CGS)) to compute counterfactual Medicare payments for each

post-PPS period stay.25 Specifically, for each stay in the PPS period, we compute the PPS payment

for the actual discharge day and each possible counterfactual discharge day. The inputs into this

calculation are the admission date, estimated hospital charges, principal and secondary diagnoses,

procedures, discharge status, age, and sex of the patient. For counterfactual lengths of stay, we

assume that hospital charges scale linearly with the observed length of stay.

With this information, the software produces the DRG code, the SSO threshold day, and the

total Medicare payment for each length of stay. To validate the software, we compare the predicted

23Also, like Inpatient PPS, LTCH PPS offers a High Cost Outlier (HCO) payment for particularly costly stays.

Specifically, an LTCH can receive a HCO payment if the cost of the case exceeds the HCO Threshold. The HCO

payment is made in addition to the regular payment amount. Importantly, for our purposes, HCO payments can be

made regardless of whether the LTCH stay is considered an SSO outlier or eligible for the full DRG payment. We

therefore exclude HCO payments from our analysis and model. About 9% of LTCH stays in our baseline sample have

HCO payments, and the median HCO payment in our baseline sample is $12,428.
24To see this, note that 120% of the DRG per diem amount times the length of stay is approximately equal to 120%

x (Full DRG payment) / ((6/5)SSO Threshold)) x LOS, which is equal to (Full DRG payment) / (SSO Threshold)

x LOS.
25For more information about this software, see: http://solutions.3m.com/wps/portal/3M/en_US/Health-

Information-Systems/HIS/Products-and-Services/Products-List-A-Z/Core-Grouping-Software/
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DRG against the DRG we observe in the data, and the predicted payment against the observed

payment for the observed length of stay. The predicted DRG matches the observed value in 99.9%

stays and the predicted Medicare payment is within one dollar of the observed Medicare payment

in 90% of stays.

Figure A.1 illustrates the resultant, estimated payment schedules for both the pre-PPS and PPS

periods. Note that this figure differs slightly from Figure 1 in the paper, which depicts a stylized

model of the post-period payment schedules in which the pre-threshold payments are constant per

diem. In practice, the pre-threshold payments appear to be slightly bowed downwards; we abstract

from this in Figure 1 which we use in our model estimates, where we use the average payment per

day for stays discharged before the threshold to construct the slope of the payment schedule prior

to the threshold.

What features of the payment rule created the jump in payments at the SSO threshold? Recall

that right of the SSO threshold, short stay outlier rules do not apply and the payment is just the full

DRG payment, which means the cumulative payment schedule is always a flat line to the right of

the threshold. To the left of the SSO Threshold, each stay is paid the minimum of four alternative

payments; the shape of the payment schedules therefore depends on which of the four alternatives

is binding. If options 1, 2, or 4 were binding, we would not see a jump at the threshold. Therefore,

we conclude that cost of the case must be binding in most cases because we observe a jump on

average. Note that the cost of case being binding is necessary rather than the suffi cient condition

for creating a jump in the payment schedule; the costs could theoretically be such that the payment

schedule only has a kink at the SSO threshold rather than a jump. In practice, however, the cost

of the case is on average lower than the other options, and we see a jump at the threshold.

Pre-PPS payment schedule. In the pre-PPS period, LTCHs were paid their (estimated)
costs, up to facility-specific per-day limit (MedPAC 2014). For most facilities, this limit was binding.

For these facilities, we calculate the LTCH payment schedule as the per-day limit multiplied by

the length of the stay. For a small number of facilities, the payment limit does not appear to bind.

For these facilities, we assume that reported costs are linear in the patient’s length of stay, and

we calculate the payment schedule as the (imputed) per-day cost multiplied by the length of stay.

When we analyze discharge patterns in the pre-PPS period, we assign each stay the SSO threshold

it would have had in the first year of the PPS period, based on the DRG assignments made using

the CGS software described above.

APPENDIX C: MORTALITY ANALYSIS

We formally test for a mortality effect using a regression discontinuity (RD) design. Let i index

individuals and t index days relative to the SSO threshold. Let yit be a mortality indicator. For

our analysis of the 1-day mortality hazard, yit takes a value of 1 if the individual dies on day t and

takes on a value of 0 if the individual is alive. For the 30-day mortality analysis, yit takes on a

value of 1 if the individual dies in the subsequent 30 days and takes on a value of 0 if the individual

does not die over this period. Individuals who have already died are excluded from the analysis.
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In our baseline RD specification, we allow for a linear trend in the running variable t and permit

this linear trend to vary on different sides of the SSO threshold:

yit = α0 + α1t+ 1t≥0(β0 + β1t) + εit . (A3)

The coeffi cient of interest β0 captures the change in mortality at the SSO threshold, conditional

on the linear controls. To confirm the robustness of our findings, we also estimate a specification

with a quadratic time trend that, as before, is also allowed to vary on different sides of the SSO

threshold:

yit = α0 + α1t+ α2t
2 + 1t≥0(β0 + β1t+ β2t

2) + εit. (A4)

In both specifications, we restrict our analysis to observations close the threshold, focusing on

bandwidths of 3, 5, and 10 days within the threshold. We cluster our standard errors at the DRG

level, which allows for correlation in the health process not only within an individual over time but

also within the set of individuals who have the same DRG and therefore may exhibit correlated

mortality profiles. We focus the mortality analysis on the post-PPS period.

Table A.III shows the parameter estimates. Panel A reports the effect on the level of the 1-day

mortality hazard (the β0 coeffi cient). Column (1) of Panel A, which shows our baseline specification

with a linear time trend and a 3-day bandwidth, indicates that 1-day mortality increases by less

than 0.01 percentage point at the threshold. This estimate is tiny in absolute magnitude, small

relative to the baseline daily mortality rate of 0.6%, and is statistically indistinguishable from zero.

Columns (2) to (6) show that this finding is robust to alternative bandwidths and a quadratic time

trend.

We use two approaches to examine more gradual effects of the threshold on mortality patterns.

In Panel B, we report the effect on the slope of the 1-day mortality hazard (the β1 coeffi cient) from

the linear specification (equation A3). If distortions in the location of care have an effect on the

evolution of health, we might expect a change in the slope of the mortality hazard at the threshold,

even if there isn’t an on impact effect on the level. The point estimates are small, statistically

insignificant, and robust to alternative bandwidths. In Panel C, we show effects on the level of the

30-day mortality hazard (the β0 coeffi cient), which is also designed to measure more gradual effects.

Column (1) of Panel C, which again shows the baseline specification with a linear time trend and

a 3-day bandwidth, indicates an economically tiny and statistically insignificant 0.005 percentage

point decline in 30-day mortality at the threshold (relative to a baseline 30-day mortality rate of

13.4%). As before, the effect is robust to alternative bandwidths and a quadratic time trend.

To complement the regression tables, in Figure A.3 we show standard RD plots for the 1-day

and 30-day mortality effects. The dots show the underlying data. The solid lines show local linear

regressions, constructed using a 3-day bandwidth and a uniform kernel so that they correspond

to our baseline specification (Table A.III, column (1)) where we estimate a linear regression on

a window of +/- 3 days around the discontinuity. The dashed lines show 95% confidence inter-

vals, constructed by bootstrapping with replacement over DRGs. The plots visually confirm the

regression evidence which showed no jump in either 1-day and 30-day mortality hazard at the

threshold.
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Because our standard errors in the regression discontinuity analysis rely on diffi cult-to-test

assumptions about the correlation structure of the error term, we assess the robustness of our

statistical inference using permutation inference (Rosenbaum 1984, 2002; Abadie et al. 2014).

Specifically, we estimate equation (A3) with a bandwidth of 3, replacing the dummy variable for

being to the right of the SSO threshold with a dummy variable for being to the right of placebo

thresholds defined at t = −12 and t = 42 in the pre- and post-PPS periods. That is, we estimate

an RD effect for a placebo threshold at each day starting 3 days after the start of our sample and

ending 3 days before the end (to allow for a 3-day bandwidth); we also exclude days -3 to 3 in the

post-PPS period since these days might be contaminated by a potential treatment effect.

Figure A.4 plots the actual effect and the distribution of placebo estimates for the 1-day and

30-day mortality hazards. The plots show that the actual change in mortality at the SSO threshold

is not particularly large relative to the typical day-to-day variation in the mortality hazard. The

distributions of placebo estimates imply a p-value of 0.796 for the 1-day mortality hazard and a

p-value of 0.757 for the 30-day mortality hazard.

APPENDIX D: NON-DYNAMIC MODELS

In Sections 4.1 and 5.1, we briefly discussed two non-dynamic alternative models of LTCH behavior:

(i) a myopic model in which the LTCHs make discharge decisions on a daily basis but does not

internalize the dynamic implications of its decisions and (ii) a completely static model in which

LTCHs commits to discharge decisions at the time of LTCH admission. Below we present these

models in more detail and argue these models perform poorly relative to our baseline dynamic

model.

D.1. Myopic Model

The first non-dynamic model we consider is one in which LTCHs are myopic and thus do not

internalize the effects of their behavior on future periods. The objective function for the LTCH

is to choose a location optimally ignoring any dynamic consideration. That is, as in the baseline

model, we assume that hospital l’s value from discharging a patient to location j is given by

uj(h) = vj(h) + σεεijt for j = d, u, (A5)

and hospital l’s value from retaining the patient is given by

ul(h) = p(t)− c+ vl(h) + σεεilt. (A6)

Unlike the baseline model, the LTCH does not take into account any dynamic implication, such as

the option value associated with discharging the patient later.

Normalizing vl(h) = 0 (as we do in the baseline model) yields the discharge probabilities

Pr(j|h, t) =
exp

[
vj(h)/σε

]
exp [(p(t)− c)/σε] + exp [vu(h)/σε] + exp [vd(h)/σε]

. (A7)
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We parameterize the health process in the same way as in the baseline model, and (as in the baseline

model) assume that vj(h) is linear in h. We estimate the model by GMM to match the standard

pre- and post-PPO period moments.

Figure A.6 shows the fit of the myopic model and Table A.V shows the parameter estimates. Not

surprisingly, the myopic model struggles to fit the discharge patterns around the jump in payments.

On the upstream margin, shown in the top left panel of Figure A.6, the myopic model predicts

that LTCHs are relatively unresponsive to the change in incentives. While actual discharges nearly

double at the SSO threshold, the myopic model predicts almost no jump in behavior. The reason

is intuitive: To fit the relatively high level of discharges on the day before the jump in payments

(t = −1), myopic LTCHs are estimated to be insensitive to price. But this results in the model

being unable to match the jump at the SSO threshold. The dynamic model can better fit the data

because it allows for a “second dimension” of LTCH behavior. Because LTCHs are dynamically

building up a stock of patients who are marginal to the change in the incentives, they can exhibit

a jump in discharges at the SSO threshold (t = 0) while still being inelastic enough to discharge

sick patients on the day prior to the jump (t = −1).

Conversely, on the downstream margin, shown in the middle left panel of Figure A.6, LTCHs are

too responsive to the jump in payments. While the myopic model matches the level of discharges

after the jump in payments (t = 0), it predicts that the LTCH will discharge nobody on the day

before the payment increase (t = −1), which undershoots the actual discharge rate of approximately

1%. In a sense, the myopic model is making the “opposite” mistake relative to the upstream

margin. To fit the sharp jump at the threshold, the myopic LTCHs are estimated to be extremely

price sensitive. But this price sensitivity makes the model unable to match the positive share of

discharges at the SSO threshold, where keeping the patient an additional day would result in a large

payday. Because forward-looking LTCHs build up a stock of marginal patients, the dynamic model

is able to match the jump in discharges while at the same time also discharging some patients on

the day prior to the jump (t = −1).

D.2. Static Model

The second non-dynamic model we consider is a completely static model in which, at the time

of admission, the LTCH commits to discharge the patient to a given location (either upstream or

downstream) after a given number of days. As in the baseline model, we use V j(h) to denote the

payoff to discharging the patient to location j = u, d and p(t) − c to denote net revenue. Since
the LTCH commits to a discharge decision at admission, we assume that at admission the LTCH

draws a separate logit error for each length of stay by location of discharge with scale parameter

σε. Normalizing the patient’s utility at the LTCH to zero yields the discharge probabilities

Pr(j, t|h0) =
exp

[(∑t
τ=1 δ

τS(τ |h0)(p(τ)− c) + δt+1S(t|h0)
∫
V j(ht)dF (ht|h0))

)
/σε
]∑

k=u,d

∑
s=−15,...,+45 exp

[(∑s
τ=1 δ

τS(τ |h0)(p(τ)− c) + δs+1S(s|h0)
∫
V k(hs)dF (hs|h0))

)
/σε
]

(A8)
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where S(t|h0) is the survival function, the probability that a patient with initial health h survives to
period t. Within the exponents, the first term,

∑t
τ=1 δ

τS(τ |h0)(p(τ)−c), is the expected discounted
net profits and the second term is the probability the patient survives to a given t multiplied by

the payoff V l(h) from discharging them to location j at that date. The health process and V js are

parameterized and have the same interpretation as in the baseline model. The model is estimated

by GMM to match the standard moments in the pre- and post-PPO period.

Figure A.7 shows the fit of the static model and Table A.VI shows the parameter estimates.

The static model fits the moments quite well but has two weaknesses relative to the dynamic

framework. First, because the LTCH does not condition on heterogeneous future health when it

makes its discharge decisions, a much larger share of the heterogeneity loads on the logit error. In

particular, the scale term on the logit error is more than 10 times larger in the static model than in

the baseline model ($7,337 versus $597). From a modeling perspective, we think it is more desirable

for the heterogeneity to load on the health process, which has a clearer economic interpretation.

Second, because the discharge locations are largely determined by the logit draws, rather than the

evaluation of health, the static model does not capture the relationship between discharge location

and observed health. Recall that Figure 4 shows that patients discharged upstream exhibited much

larger post-discharge payments than patients discharged downstream. Indeed, these patterns were

an important motivation for our “vertical”discharge model.

Figure A.8 shows predicted 30-day post-discharge mortality for both the baseline (top panel)

and static models (bottom panel) under the assumption that health outside of the LTCH evolves

according to the same health process we estimated for patients that remain at the LTCH. Because

in the static model LTCHs do not adjust their decisions based on the evolution of health, discharge

decisions are largely based on the logit draw, and over longer time horizons, there is very little

difference in the projected 30-day post-discharge mortality by location of discharge (upstream versus

downstream). While we do not model the health process outside of the LTCH and therefore do

not attempt to perfectly fit post-discharge mortality within the baseline model, our baseline model

also predicts large differences in 30-day post-discharge mortality on the upstream and downstream

margins, which is much more consistent with this basic feature of our economic environment.

APPENDIX E: IDENTIFICATION

In Section 4.4, we provided intuition for how the variation in our data allows us to separately

identify the parameters in our model. In this appendix, we provide some additional details. We

first present some quantitative exercises that link perturbations of model parameters to changes in

the moments that are used for estimation; the results from this exercise are generally consistent

with the overall intuition provided in Section 4.4 of the main text. We then focus on the preference

parameters, which are the most critical for our counterfactual exercises, and show how, conditional

on patient health, the variation around the jump in payments due to the SSO threshold allows us

to separately identify σε, c, and the υ’s.
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E.1. The impact of changes in parameter values on the estimation moments

To provide more evidence on the mapping between data and parameters, in this section we conduct

a perturbation exercise where we adjust each of the parameters on a one-by-one basis and measure

the response of the predicted moments we use for estimation.

Figure A.9 provides a few specific examples of the output from this analysis. The left panels

show the absolute change in discharges upstream, downstream, and to death by length of stay

where we increase the mean of the initial health distribution (µ0) by its standard error (0.14). The

figures show that the effect of mean initial health is concentrated in the first few days of the stay

and mainly affects discharges to death. The right panels show the absolute change in discharges

upstream, downstream, and to death by length of stay where we increase the scale parameter on

the logit errors (σε) by five times its standard error (135). Perturbing the scale parameter has the

largest effects around the SSO threshold on the upstream and downstream margins.

In Table A.VII we attempt to summarize the output from this analysis across all of the parame-

ters, discharge margins, and lengths of stay. To ease the presentation, we segment the parameters

into three groups: Initial health parameters (µ0, σ0), non-initial health parameters (µ, σ, ρ), and

preference and cost parameters (υ1u, υ0d, υ1d, σε, c). For each discharge destination (upstream,

downstream, death), we also divide the post-PPS time period into early (t = −15, ...,−11), pre-

threshold (t = −10, ...,−3), near-threshold (t = −2, ...,+10), and post-threshold (t = +11, ...,+45).

A cell in the table shows the simple average of the absolute change in the discharge share (to the

corresponding destination) over a set of the corresponding parameters and days.

Column (1) of Table A.VII shows that the initial health parameters are primarily affecting

discharges in the early days, and particularly strongly related to discharges to death in the first few

days of the stay (consistent with the example shown in Figure A.9). The link between the health

parameters and discharge to death is not surprising. There is a one-for-one mapping between a

patient’s health and their probability of death. The fact that this connection is concentrated in

the first few days after admission suggests that the initial health parameters are largely pinned

down by the moments over the first few days, and that these parameters are not strongly affecting

discharge (and mortality) patterns in later days of the stay.

Column (2) shows that, as may be expected, perturbing the non-initial health parameters

generates fairly broad shifts in the discharge moments, both across the different locations (upstream,

downstream, death) and different lengths of stay. This is a direct consequence of health being an

important state variable that governs behavior across all of the discharge margins and time periods.

Finally, column (3) shows that the preference and costs parameters are most strongly connected

to the downstream moments, except well after the SSO threshold (t = +11, ...,+45) where the

connection is weaker.

Overall, the table is consistent with our intuitive discussion in Section 4.4 of the main text, and

loosely supports a “triangular”identification argument, whereby the initial mortality and discharge

patterns identify the initial health parameters, the mortality and upstream patterns during the

rest of the LTCH stay identify the health evolution process (non-initial health parameters), and
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conditional on these, the downstream discharge patterns before and around the SSO threshold

identify the preference parameters.

E.2. Separately identifying the scale, cost, and preference parameters

Our main counterfactual exercises analyze changes in LTCH payments, making it important to pay

particular attention to the way we identify the non-health parameters, which are the ones that

are most directly affecting the response of the LTCH discharge policy to changes in payments. In

this section we therefore “zoom in”on this group of parameters —σε, c, and the υ’s —and provide

more detail on how the variation around the jump allows us to separately identify each of them

separately.

In Section 4.4 of the main text we argue that the jump in payments at the SSO threshold allows

us to identify the scale parameter (σε) from the cost parameter (c) and preference parameters

(the υ’s) while the costs and preference parameters are separately identified by the differential

discharge patterns elsewhere during the LTCH stay. Here we provide support for these arguments

by showing the effect of perturbing these parameters on the choice specific payoffs. To simplify the

exposition, we focus on the downstream margin and hold fixed patient health at a given value h,

thus reducing the set of υ’s to a single parameter. That is, discharges on the downstream margin

are characterized by the scale parameter σε on the logit errors, the cost parameter c, and the V d(h)

value of discharging the patient downstream. Figure A.10 shows the net payoffs to discharging

downstream relative to keeping the patients at the LTCH (V d(h) − V l(h)) for h = 10.5, which is

approximately the health index of the marginal patient discharged downstream under the estimated

parameters (see Figure 7 in the main text). The solid lines show the net payoffs from discharge at

the estimated parameters. The dashed lines show the net payoffs from discharge when we increase

the parameter values.

The top panel shows the effect of increasing the scale parameter σε by 50% of its estimated

value (from 5.97 to 8.96). Intuitively, because we normalize the coeffi cient on profits (p(t)− c) to 1
in the LTCH’s objective function, σε can be thought of as the inverse “profits sensitivity”of LTCH

behavior. Therefore, prior to the SSO threshold, increasing σε reduces the option value of retaining

the patient until the jump in payments because the LTCH places less weight on the financial value

of the jump in payments, thus raising the value of discharging the patient. After the SSO threshold

profits are negative, so increasing σε makes retaining the patient not as bad, thus lowering the

value of discharging the patient. As a result, σε can be thought of as modulating the change in net

payoffs at the SSO threshold, with a higher value for σε resulting in a smaller change in discharges

at the jump in payments conditional on patient health.

The middle panel shows the effects of increasing cost c by 25% of its estimated value (from 1091

to 1363). Increasing the cost parameter c has a negative impact on the LTCH’s value from retaining

a patient at the LTCH both before and after the SSO threshold, and the extent of this impact is

proportional to the expected length of stay of the patient. The shift in the value of discharge is

relatively larger in the first few days of the hospital stay because at that point the LTCH expects
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to keep the patient for a longer number of days (in order to receive the large lump sum payment at

the SSO threshold). The shift is uniform after the SSO threshold because the problem is stationary.

The bottom panel shows the effect of raising the value of downstream discharge V d(h) for a

patient with h = 10.5 from -10.8 to 32.4. Raising V d(h) directly increases the value of discharging

the patient downstream. Since most patients who are retained at the LTCH are eventually dis-

charged downstream, raising V d(h) also increases the continuation value of retaining the patient at

the LTCH and discharging them downstream in a later period. The indirect effect is smaller than

the direct effect because of discounting and the probability that the patient is discharged upstream

or to death instead of downstream at a later date. Thus, there is a net increase in the payoff to

discharging the patient, but unlike the effect of costs, which was relatively larger in the first few

days of the stay, the effect of increasing υ0d is fairly constant over time because discounting is

minimal and death probability is low for patients who are close to the downstream margin.

Given the results of these perturbation exercises, it is now easier to see how the model is iden-

tified. The scale parameter is separately identified from the costs and V d(h) because it modulates

the size of the shift in net payoffs at the SSO threshold, while the costs and V d(h) parameters

are mostly affected by the level of discharge rates. They are separately identified from each other

because of the differential movement in the first few days of the LTCH stay.

APPENDIX F: ROBUSTNESS

In our baseline model, we made a number of parametric assumptions. In order to assess the

sensitivity of our main results to these assumptions, Table A.VIII reports the main results (from

Table IV) from a subset of the alternative specifications that we examined. The results appear to

be qualitatively robust.

In our first alternative specification, we relax the assumption that the health process is stationary

by allowing the auto-correlation parameter ρ to vary with length-of-stay according to ρ = ρ0 +

ρ1 ln(t + 1), where the time index is defined such that the patient is admitted on date t = 0.26

While in the pre-PPS period ρ1 is very close to zero, in the PPS period the estimate is slightly

negative ρ1 = −0.005, which is consistent with health becoming less stable over the course of the

stay. However, as shown in Panel B of Table A.VIII, enriching the specification in this manner has

virtually no effect on the counterfactuals. We also specified other models of health processes, such

as a random walk and a random walk with a drift, but the ability of these models to fit the data

was much worse than our baseline specification.

The second specification reported in Table A.VIII fits the model using only the PPS moments.

The counterfactuals, shown in Panel C of Table A.VIII, are very similar to the baseline estimates,

suggesting that the sharp jump in payments at the SSO threshold, relative to over-time variation

from the implementation of LTCH-PPS, is the key driver of the results. The limited importance

26We assume that the correlation parameter becomes fixed after 45 days at a value of ρ = ρ0 + ρ1 ln(46) so that

the dynamic programming problem becomes stationary for t > 45, allowing us to solve the t > 45 problem by value

function iteration and earlier periods by backwards induction.
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of the over-time variation presumably stems from the fact that we allow distinct health process

parameters in each period, thereby soaking up much of the over-time variation.
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Figure 1.—LTCH Payment Schedules Before and After PPS. Figure presents the payment sched-

ule in both the pre-PPS and PPS periods. Sample pools admissions that are associated with

different short stay outlier (SSO) thresholds, and x-axis is normalized by counting days relative to

the threshold. The linear payment schedule begins with the first day of admission, and the y-axis

is normalized to zero for day -16.
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Figure 2.—Patient Flow Into and Out of Post-Acute Care. Top panel shows patient flow from

acute care hospitals (ACHs) to the different destinations: post-acute care (PAC) facilities; home

and home health agencies; and death or hospice. Post-acute care facilities include Long-Term Care

Hospitals (LTCHs), Skilled Nursing Facilities (SNFs) and Inpatient Rehabilitation Facilities (IRFs).

Bottom panel shows how the patient flow pattern is different, within PAC, between Long-Term Care

Hospitals (LTCHs) and other PAC facilities (SNFs and IRFs). All numbers are calculated using

the universe of Traditional Medicare admissions during the PPS period (October 2007 to July

2012). Numbers are shares of total discharges from each type of facility, excluding a small share

of discharges (never greater than 5%) that are more diffi cult to classify. See Appendix A for more

details.
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Figure 3.—Discharge Patterns by Length of Stay. Figure presents the distribution of the time

of discharge relative to the SSO threshold. That is, each line shows the number of discharges on

a given (relative) day divided by the total number of LTCH admissions. Sample pools admissions

that are associated with different SSO thresholds, and x-axis is normalized by counting days relative

to the threshold. The top left panel presents the distribution for all discharges, the top right and

bottom left panel present the same information separately for downstream (SNF, IRF, LTCH, home

health, home, or other) and upstream (ACH or hospice) discharges, and the bottom right panel

presents discharges due to death occurring within the LTCH.
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Figure 4.—Post-Discharge Payments. Figure presents the average post-discharge payments for

patients discharged alive, by discharge day and discharge destination (upstream vs. downstream,

as defined in Figure 3). We define a post-discharge episode as ongoing until there is a break of at

least two days that does not involve a facility stay; see text for more details.
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Figure 5.—Mortality Patterns by Days since LTCH Admission. Figure presents post-LTCH-

admission mortality-hazard rates by day. Mortality includes any mortality, whether it occurs within

the LTCH or after discharge. Each panel presents hazard rates for different subsequent horizons:

same day (top) and 30-day forward (bottom).
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Figure 6.—The Effect of Changes in the SSO Threshold on Mortality. Figure shows residualized

binned scatter plots (as in, for example, Chetty et al. 2014). The vertical axis shows the outcome

variable net of year and DRG fixed effects, and the horizontal axis shows the SSO threshold net

of year and DRG fixed effects. The panels show scatter plots where we aggregate the data by

ventiles of the horizontal axis variable (SSO threshold). In the top left panel, the outcome variable

is length of stay. In the remaining panels, the outcome variable is the 30-, 60-, and 90-day mortality

rates (unconditional on location of care). The plots also display the best fit line from estimating

equation (1), along with the estimated slope coeffi cient and heteroskedasticity-robust standard

errors in parentheses.
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Figure 7.—Implied Health Processes and Optimal Discharge Policy. Figure shows the policy

function implied by the estimated model. The top black line approximates the health level above

which a patient is discharged to d, and the bottom black line approximates the health level below

which a patient is discharged to u. Higher h denotes better health (lower mortality). Recall that

the policy function is not a deterministic function of h; given the ε’s in the LTCH’s flow payoff

function (see equation (3)), h is related to discharge stochastically. The policy lines in the above

figure are drawn so that at that given level of h, 50% of the patients are discharged to d (top line)

and u (bottom line).
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Figure 8.—Choice-Specific Continuation Values as a Function of the State Variables. Top panel

presents choice-specific continuation values as a function of the state variables: health status of the

patient (on the horizontal axis) and the number of days until the SSO threshold (shown in separate

lines) from day -15 through day 0. The dashed lines are the continuation values from discharging

the patient upstream (left dashed line) and downstream (right dashed line), and these (by design)

do not change with time to the SSO threshold. The solid lines are the continuation values from

retaining the patient at the LTCH, and these do vary over time. They are monotone in days; within

a day the pattern of continuation values by health status changes at day -1 (the day before the

SSO threshold) when the large payment is guaranteed, and continues with a similar pattern (but

much lower level) of continuation values on the threshold day (day 0). Continuation values after

day 0 are identical to those shown for day 0 given the stationary nature of the problem after the

threshold. The bottom panel of the figure presents the probability of the patient being retained at

the LTCH until the SSO threshold (conditional on the optimal discharge policy).
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Figure 9.—Counterfactual Payment Schedules. Figure shows the observed (PPS) payment sched-

ule (thick gray line in both panels) and the first two counterfactual payment schedules we consider

(black line in each panel). Both counterfactual schedules eliminate the jump in payments at the

SSO threshold, but do this in different ways.
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Figure 10.—Counterfactual Policy Functions and Discharge Patterns. Top left panel shows the

implied discharge policy function from the two “no jump” counterfactual payment schedules de-

scribed in the main text and illustrated in Figure 9. The discharge policy function associated with

the observed contract design is shown in gray and is the same as the one reported in Figure 7. The

three other panels show discharges (upstream, downstream, and to death) under these two coun-

terfactual payment schedules. The solid black line reports results that are based on our parameter

estimates (reported in Table III) and the observed payment schedule, and each other line reports

the results under a different counterfactual payment schedule.
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Figure 11.—“Win-Win” Payment Schedules. The top panel shows some examples of the 21

potential “win-win”contracts we consider. All contracts pay a constant amount up to a threshold

length of stay, where they are capped (so that per diem rate drops to zero) with no jump at the

threshold. We consider threshold days ranging from +/- 10 days of the current threshold, with the

unique payment schedule defined for each threshold day as the one that would hold payments to the

LTCH (i.e., LTCH revenue) fixed if they did not change their discharge behavior under the observed

contracts. The bottom panels show outcomes (given the LTCH’s counterfactual behavior) under

these various potential “win-win” payment schedules shown in the top panel. For each schedule

(represented by a dot which is labeled with the day the payment schedule switches from a per-day

rate to a cap) the bottom left panel shows LTCH payments per admission against (the negative

of) total Medicare payments (including estimated post-discharge payments) for the episode of care;

and the bottom right panel shows LTCH profits per admission against total Medicare payments.
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Figure A.1.—Empirical vs. Approximated Payment Schedules. Figure presents the payment

schedules used in the paper (gray lines, which are the same as Figure 1 in the main text) against

the observed payments (black lines). Appendix B provides more detail about the (slight) differences.
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Figure A.2.—Post-Discharge Mortality Rates. Figure presents the (forward looking) 30-day

mortality rate after a (live) discharge, as a function of the day of discharge.
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Figure A.3.—RD Plots of Mortality Hazard by Days since LTCH Admission. Figure shows RD

plots of the effects on mortality by days since admission in the PPS period. Mortality includes any

mortality, whether it occurs within the LTCH or after discharge. Days since admission is normalized

by counting days relative to the SSO threshold. The top panel shows the 1-day mortality hazard,

defined as the fraction of living individuals who die in the next day; the bottom panel shows the

30-day mortality hazard, defined as the fraction of living individuals who die in the next 30 days.

The dots show the underlying data averaged by day. The solid lines show local linear regressions,

constructed using a 3-day bandwidth and a uniform kernel. The dashed lines show 95% confidence

intervals, constructed by bootstrapping with replacement over DRGs.
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Figure A.4.—Perturbation Tests for the Estimated Mortality Effect. Figure shows perturbation

tests for the mortality effect described in Appendix C. The top panel reports the estimated 1-day

mortality effect and the bottom panel reports the estimated 30-day mortality effect from estimating

equation (A3) with a bandwidth of 3, but replacing the dummy variable for being to the right of the

SSO threshold with a dummy variable for being to the right of a placebo threshold; see Appendix

C for more details. The figure also shows where the actual estimated effect falls within this range

of placebo estimates.
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PPS pre-PPS

Figure A.5.—Model Fit of the Baseline Model. Figure shows the moments we use for estimation,

and how the model is able to fit them. Black bars in each panel represent the actual moments from

the data, and the gray bars represent the predicted moments from the model estimates. The left

three panels represent the PPS period, and the right three panels represent the pre-PPS period.

The top panels show discharge rates upstream, the middle panels show discharge rates downstream,

and the bottom panels show mortality rates (within the LTCH).
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PPS pre-PPS

Figure A.6.—Model Fit of the Myopic Model. Figure is parallel to Figure A.5, and shows how

the myopic model described in Appendix D.1 fits the data.
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PPS pre-PPS

Figure A.7.—Model Fit of the Static Model. Figure is parallel to Figure A.5, and shows how the

static model described in Appendix D.2 fits the data.
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Figure A.8.—Discharge Patterns Implied by the Static Model. Figure shows the 30-day mortality

rate for upstream and downstream dischargees. The top panel presents the results for the baseline

model (which trace closely the optimal discharge policy function shown in Figure 7 of the main

text), while the bottom panel shows the pattern implied by the parameter estimates of the static

model (described in Appendix D.2).
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Perturb µ0 Perturb σε

Figure A.9.—The Impact of Perturbing Selected Parameters on Discharge Patterns. Figure

presents selected perturbation exercises, which are described in Appendix E and summarized in

Table A.VII. The left panels present the impact of increasing the parameter µ0 by one standard

error on each of the moments used for estimation (discharge patterns by day upstream (top),

downstream (middle), and to death (bottom)). The right panel presents a similar exercise for the

parameter σε.
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Figure A.10.—The Impact of Perturbing Selected Parameters on Continuation Values. Figure

shows the impact of increasing each preference parameter on the continuation value of downstream

discharge (relative to retaining the patient). The top panel shows this exercise for σε, the middle

panel for c, and the bottom panel for V d(h) (we show values for h = 10.5, which is approximately

the health index of the marginal patient discharged downstream under the estimated parameters).
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TABLE I

Summary Statistics

ACH LTCH SNF/IRF ACH LTCH SNF/IRF

Number of stays (000s) 29,362 219 5,187 47,940 587 11,237
Panel A. Patient attributes

Average age 74.5 73.8 80.2 73.4 71.6 79.1
Fraction male 0.43 0.44 0.34 0.44 0.49 0.37
Fraction white 0.84 0.74 0.87 0.82 0.73 0.85
Fraction black 0.11 0.20 0.10 0.13 0.20 0.11
Fraction aged 65+ 0.86 0.83 0.94 0.81 0.75 0.91
Fraction dual eligible 0.24 0.31 0.27 0.27 0.38 0.27

Panel B. Patient health indicators
Number of Chronic Conditionsa 3.8 6.4 4.4 4.9 7.8 5.6
30 Day Mortality Since Admission 0.082 0.142 0.112 0.078 0.158 0.088
90 Day Mortality Since Admission 0.142 0.274 0.218 0.139 0.306 0.186
Fraction home within 90 daysb 0.807 0.558 0.497 0.793 0.460 0.554
Three most common DRGs:c Joint Repl. (3.9%) Ventilator (10.7%) Rehab w/ CC (17.1%)

Septicemia (2.8%) Resp. Failure (8.3%) Rehab w/o CC (10.2%)
Dig. Disorders (2.1%) Septicemia (5.7%) Ungroupable (3%)

Panel C. Procedures during stay
Length of stayd 5.6 26.6 24.0 5.2 25.3 25.6
Fraction with no procedures 0.43 0.61 0.95 0.40 0.28 0.98
Number of procedures (cond. on any) 2.5 2.4 2.0 2.6 2.8 2.1
Three most common procedures: Transfusion (6.2%) Cath (7.5%) Phys. Therapy (2.6%) Transfusion (9.9%) Cath (19.7%) Occ. Therapy (1.3%)

Arteriography (5.5%) Transfusion (5.5%) Occ. Therapy (2.4%) Cath. (6.5%) Transfusion (17.8%) Phys. Therapy (1.2%)
Cardiac cath. (5.2%) Occ. Therapy (5.0%) Transfusion (0.3%) Dialysis (4.5%) Ventilation (14.4%) Transfusion (0.2%)

Panel D. Payments and cost (2012 $)
Total Medicare payments per stay 9,415 28,351 9,860 10,816 35,216 12,953
Medicare payments per day 1,672 1,068 412 2,074 1,391 507
Out­of­pocket payments 772 2,336 1,618 836 1,907 1,951
Out­of­pocket payments per day 137 88 68 160 75 76
Total reported costs ­­ 28,351 ­­ ­­ 36,092 ­­
Reported cost per day ­­ 1,068 ­­ ­­ 1,426 ­­

Pre­PPS (Jan 2000 ­ Sep 2002) PPS (Oct 2007 ­ Jul 2012)

a Number of chronic conditions is measured in the calendar year prior to the stay.
b Reports fraction home at least once during the 90 days after admission, where “home”means

alive and not in a facility (ACH, LTCH, SNF/IRF, or hospice).
c DRG groupings changed between the pre-period and post-period, so for simplicity we report this

only for the post-period.
d Length of stay is censored at 100 days for SNFs, since after that Medicare does not pay and

therefore further days are not observed. This applies to about 2% of stays.
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TABLE II

Post-Discharge Outcomes

Overall Upstream Downstream Overall Upstream Downstream

Number of discharges (000s) 188.7 41.8 147.0 509.7 80.3 429.4
Post­discharge 30­day mortality 11.2 24.9 7.4 14.2 47.6 8.0
Post­discharge 90­day mortality 20.2 37.5 15.3 24.3 60.0 17.6
Post­discharge paymentsa 13,100 31,405 7,901 22,808 35,775 20,382
Post­discharge facility daysa 17.1 32.8 12.6 26.1 33.0 24.8

Pre­PPS (Jan 2000 ­ Sep 2002) PPS (Oct 2007 ­ July 2012)

Table presents summary statistics on post-discharge costs and facility days using the baseline

sample of LTCH stays described in Table I, excluding discharges due to death.
a Post-discharge payments and post-discharge days refer to the entire post-discharge episode

of care, which we define as beginning at the day of discharge and ending when there are two

consecutive days with no payments from either a ACH, SNF/IRF or LTCH.
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TABLE III

Parameter Estimates

Parameter Std. error Parameter Std. error

Health process during pre­PPS: Preferences:
μ0 11.31 0.139 c (000s) 1.11 0.018
σ0 4.31 0.060 ν1u (000s) ­31.12 1.880
μ 0.39 0.023 ν0d (000s) ­76.22 2.462
ρ 0.99 0.002 ν1d (000s) 6.63 0.189
σ 2.45 0.002 σε (00s) 8.14 0.217

Health process during PPS: Post­discharge payments:
μ0 5.37 0.134 ζ0u 10.09 0.038
σ0 1.87 0.060 ζ1u ­0.77 0.049
μ 3.90 0.091 ζ0d 12.65 0.039
ρ 0.34 0.006 ζ1d ­0.28 0.009
σ 2.14 0.062

Table presents parameter estimates in our baseline specification. Standard errors are computed

using the asymptotic GMM formula, where the variance-covariance matrix is computed using the

bootstrap method, sampling with replacement from the set of LTCH admissions.
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TABLE IV

Discharges and Payments from Counterfactual Payment Schedules

(1) (2) (3) (4) (5) (6)

LTCH payments:
Total payments 27,953 28,316 16,024 26,313 35,546 7,392
Total profits 6,518 8,991 ­407 6,876 ­971 ­8,865
Average LOSa 19.3 17.4 14.8 17.5 32.9 14.7
Payment per day 1,446 1,625 1,082 1,501 1,080 504

Discharges upstream:
Total payments 3,813 3,551 3,223 3,583 5,911 3,240
Share of discharges 0.11 0.11 0.10 0.11 0.17 0.10
Payment per discharge 33,669 33,315 32,561 33,312 35,513 32,494

Discharges downstream:
Total payments 16,031 16,009 16,153 15,795 10,394 15,247
Share of discharges 0.79 0.80 0.83 0.80 0.66 0.83
Payment per discharge 20,367 19,913 19,548 19,674 15,648 18,436

Total Medicare payments 47,796 47,877 35,399 45,691 51,851 25,879

Counterfactual payment schedule
Pre­SSO per diem 1,380 2,145 1,380 1,931 1,109 507
Cap amount 34,319 34,319 22,074 32,830 66,540 30,420

Linear schedule at
"opportunity" (SNF)

cost

Observed
schedule

Higher rate per
day Lower cap

Lowest Medicare
Payment within

"LTCH preferred"
schedules

Linear schedule at
estimated cost

Table presents results from the counterfactual payment schedules. Column (1) reports results

that are based on our parameter estimates (reported in Table III) and the observed payment

schedule, and each other column reports the results from predicted discharge patterns under a

different counterfactual payment schedule. The counterfactual payment schedules we consider are

described in the main text.
a Length of stay is measured from day -15. To make it comparable to the summary statistics

reported in Table I, all numbers should be increased by 7.5 days (because the average SSO threshold

across admissions in our sample is 22.5 days).
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TABLE A.I

Discharge Destinations

Pre­PPS PPS

Death 0.138 0.132

Upstream 0.191 0.137
Inpatient 0.981 0.761
Hospice 0.019 0.239

Downstream 0.672 0.731
LTCH 0.001 0.006
SNF 0.240 0.434
IRF 0.006 0.066
Home Health 0.214 0.302
Home 0.453 0.139
Other 0.085 0.053

Total 1.00 1.00

Number of Obs. 218,857 587,385

Table shows the percentage of discharges to death, upstream, and downstream in pre-PPS and

PPS periods. The upstream and downstream discharges are further decomposed.
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TABLE A.II

Post-Discharge Outcomes

Overall Upstream Downstream Overall Upstream Downstream

Number of discharges (000s) 188.7 41.8 147.0 509.7 80.3 429.4
Post­discharge payments (upper bound) 13,100 31,405 7,901 22,808 35,775 20,382
Post­discharge payments (lower bound) 12,106 30,712 6,821 20,144 33,446 17,655
Post­discharge facility days (upper bound) 17.1 32.8 12.6 26.1 33.0 24.8
Post­discharge facility days (lower bound) 16.9 32.1 12.6 24.7 26.0 24.4

Pre­PPS (Jan 2000 ­ Sep 2002) PPS (Oct 2007 ­ July 2012)

Table presents upper and lower bounds for our imputation of post-discharge payments and days

using the baseline sample of LTCH stays described in Table I, excluding discharges due to death.

Appendix A provides more detail. The upper bound is used for our empirical analysis.
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TABLE A.III

Regression Discontinuity Effect on Mortality

(1) (2) (3) (4) (5) (6)

Panel A. Effect on 1­day mortality hazard

Post Threshold Indicator 0.00007 0.00021 0.00039 0.00003 ­0.00013 0.00018
(0.00023) (0.00017) (0.00013) (0.00048) (0.00030) (0.00019)

[0.763] [0.213] [0.003] [0.954] [0.671] [0.336]
Bandwidth 3 5 10 3 5 10
No. of Obs. 3,617,134 5,685,012 10,864,654 3,617,134 5,685,012 10,864,654

Panel B. Effect on 1­day mortality hazard slope

Post Threshold Indicator ­0.00013 0.00004 0.00002
(0.00008) (0.00004) (0.00002)

[0.115] [0.264] [0.149]
Bandwidth 3 5 10
No. of Obs. 3,617,134 5,685,012 10,864,654

Panel C. Effect on 30­day mortality hazard

Post Threshold Indicator ­0.00005 ­0.00023 0.00013 0.00013 ­0.00007 ­0.00016
(0.00016) (0.00016) (0.00022) (0.00026) (0.00021) (0.00021)

[0.778] [0.156] [0.548] [0.608] [0.751] [0.425]
Bandwidth 3 5 10 3 5 10
No. of Obs. 3,617,134 5,685,012 10,864,654 3,617,134 5,685,012 10,864,654

Linear Quadratic

Table shows results from the regression discontinuity mortality analysis described in Appen-

dix C. Columns (1)-(3) use a linear functional form (see equation A3) before and after the SSO

threshold, while columns (4)-(6) use a quadratic functional form (see equation A4). Panels A and

C report the estimate of the β0 coeffi cient, which captures the jump in mortality rate at the SSO

threshold in the PPS-period; Panel B reports the estimate of the β1 coeffi cient, which captures

the change in the slope of the mortality rate at the threshold in the PPS-period. Each column

restricts the analysis to a different bandwidth number of days before and after the SSO threshold.

The 1-day mortality hazard is defined as the share of individuals alive at a given day who die

by the next day; the 30-day mortality hazard is similarly defined as the share of individuals alive

at a given day who die in the next 30 days. All mortality rates are calculated unconditional on

patient’s location. Standard errors, clustered at the DRG level, are in regular brackets and p-values

in squared brackets.
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TABLE A.IV

Using SSO Threshold Variation to Estimate Mortality Effects

Mean FS RF est. IV (pp) IV (pct.) 95% CI (pct.)

30­day mortality 0.158 0.298 0.0000 0.0001 0.0007 (­0.035, 0.036)
(0.067) (0.001) (0.003) (0.018)

60­day mortality 0.253 0.298 ­0.0013 ­0.0045 ­0.0176 (­0.047, 0.012)
(0.067) (0.001) (0.004) (0.015)

90­day mortality 0.306 0.298 ­0.0012 ­0.0040 ­0.0129 (­0.043, 0.018)
(0.067) (0.002) (0.005) (0.016)

Table shows 2SLS estimates of the effect of length of stay on mortality, instrumenting for length

of stay with over-time changes in the SSO threshold. The first column shows the mean mortality

rate over 30-, 60- and 90-day time horizons (unconditional on location of care). The second column

shows the first stage effect of the SSO threshold on length of stay (see equation 1); the third

column shows the reduced form effect of the SSO threshold on mortality from a linear regression

with year and DRG fixed effects (see equation 1). The fourth column shows the 2SLS estimate,

where the first stage is a regression of length of stay on the SSO threshold and year and DRG fixed

effects (shown in column 2), and the second stage is a regression of mortality on length of stay and

year and DRG fixed effects. The final two columns show the 2SLS estimate (and 95% confidence

interval) as a percentage of the mean mortality rate. Standard errors and confidence intervals are

all heteroskedasticity robust.
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TABLE A.V

Parameter Estimates from the Myopic Version of the Model

Parameter Parameter

Health process during pre­PPS: Preferences:
μ0 7.53 c (000s) 1.24
σ0 2.77 ν1u (000s) ­380.45
μ 0.76 ν0d (000s) ­4.48
ρ 0.94 ν1d (000s) 0.21
σ 1.96 σε (00s) 5.14

Health process during PPS:
μ0 7.67
σ0 2.86
μ 1.84
ρ 0.79
σ 2.29

Table presents point estimates of the parameters for the myopic version of the model, which we

describe in Appendix D.1.
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TABLE A.VI

Parameter Estimates from the Static Version of the Model

Parameter Parameter

Health process during pre­PPS: Preferences:
μ0 15.35 c (000s) 1.77
σ0 4.98 ν1u (000s) 0.71
μ 3.33 ν0d (000s) ­53.77
ρ 0.85 ν1d (000s) 3.72
σ 4.67 σε (00s) 73.38

Health process during PPS:
μ0 20.64
σ0 8.28
μ 0.42
ρ 0.99
σ 3.07

Table presents point estimates of the parameters for the static version of the model, which we

describe in Appendix D.2.
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TABLE A.VII

Summary of Parameter Perturbation Exercise

Initial  health Health process Preference

Upstream
Early 0.443 5.652 0.673
Pre­threshold 0.049 5.166 0.706
Near­threshold 0.043 4.106 1.190
Post­threshold 0.005 0.609 0.172

Downstream
Early 0.656 4.259 3.484
Pre­threshold 0.137 6.094 3.170
Near­threshold 0.478 13.035 2.466
Post­threshold 0.058 0.625 0.629

Death
Early 2.368 3.567 0.279
Pre­threshold 0.053 3.870 0.305
Near­threshold 0.029 2.033 0.361
Post­threshold 0.003 0.276 0.060

Table summarizes the perturbation exercise described in Appendix E. We start by perturbing

each parameter of the model by a single standard error, and measure its impact on each estimation

moment; Figure A.9 presents two selected examples. We then summarize this exercise by averaging

the impact across parameters in a given group and aggregating over groups of days. Parameters

are grouped into initial health (µ0 and σ0), health process (µ, σ, and ρ) and preferences parameters

(everything else).
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TABLE A.VIII

Robustness to Alternative Specifications

Observed schedule Higher rate per day Lower cap

Lowest Medicare
Payment within

"LTCH preferred"
schedules

A. Baseline specification
LTCH Total Payments 27,953 28,316 16,024 26,313
LTCH Total Profits 6,518 8,991 ­407 6,876
LTCH Average LOS 19.3 17.4 14.8 17.5
Total Medicare Payments 47,796 47,877 35,399 45,691

B. Alternative specification #1: time­varying health process
LTCH Total Payments 27,953 28,324 16,043 26,320
LTCH Total Profits 5,153 7,762 ­1,460 5,640
LTCH Average LOS 19.3 17.4 14.8 17.5
Total Medicare Payments 47,819 47,916 35,471 45,726

C. Alternative specification #2: post­PPS moments only
LTCH Total Payments 28,101 28,545 16,506 26,648
LTCH Total Profits 10,446 12,454 2,466 10,421
LTCH Average LOS 19.8 18.0 15.7 18.2
Total Medicare Payments 47,969 48,322 36,211 46,225

Table reports the main results from Table IV under two alternative specifications of the model.

Panel A reports results from the baseline specification, which corresponds to the numbers that are

already reported in Table IV. Panel B repeats the analysis, but we allow the AR(1) health process

to vary over time by allowing the serial correlation parameter ρ to change linearly with the natural

logarithm of days since LTCH admission. Panel C re-estimates the model using only data from the

post-PPS period.
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